
1 AD—AO~~ 328 MASSAC*JSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE—ETC FIG ~/4
I ACTOR SYSTEMS FOR REAL—TIME COMPUTATION. (Ii)

MAR 78 H G BAKER N000x;—ys—c—0522
IMCLASSIFIEO NIT/LCS/TR—197

~~~~

-T



LA BOR ATORY FOR ~~~~~~~~~
4

~~~~~~S 7Th)
COM PUTER SCIENCE TECHNOLOGY ~~~~~~~~~~

MIT/LCS/TR- 197

ACTOR SYSTEMS FOR
REAL-TIME COMPUTATI ON

Henry G. Baker, f3 D C

This research was supported by the Office of Naval
Research under Contract No. N00014-75-C-0522

545 TECHNOLOGY SQUARE , CAMBRIDGE , MASSACHUSETt S 02139

C~STfl13UTION STATEM~irT
~ I~p~~~ d for public T.1.aa.;

Cl thiztlou Uiiltmft.d

- w — ~~~~~~~~ ——- —V---.. —
~~

SECURITY CLASSIFICATION OF THIS PAGE (IThw Oars Ent.r.d)

~~~~~~ ~~~~~~~~ ELI A1I~~ LI 

~
41’E READ INSTRUCTIONS

fl I~~J~% I LP~J~..UIR I~ I ~~ I I~~fl F~~~V BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESsIq~ero o ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~

MIT/LCS/TR— 197 1 (g T~ Ot.Jt~J.(
4. TITLE ( i d  SubtiSl •) i... TYPE~OF RiPORT .&.&EfiI Q~~ COVERED )_J

,t~ ( Ph.D. Thesis , Feb .14 ,1978(j~ ~~~~~~~~~yst~~ s for Real-Time cornputati~~~~J ~~~~~~ ~~~ C V ~~~~~~~~~~~~~~~~~~~
J

T N U M B E R

7. AUTHOR(s) W. RACT OR GRANT NUMBER(s)

~~~~~ 7 i T  Jri7
’

N000l4—75—c—4522’

J~~PERFORM IN G ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK
A R E A & WORK U N I T N U M B E R SMIT/Laboratory for Computer Science J

545 Technology Square
Cambridge , Ma 02139

II. CONTROLLING OFFICE N A M E A N D ADDRESS REPOR T.~~Office of Naval Research (j f Mar j~Jepartment o t e Navy
~---~~ 13 R rsIntormation Systems Program .

-Arlington, Va 22217 147
W MONITORING AGENCY NAME & ADDRESS(iI d if f e r e n t f rom Cont,ollinl Office) IS. SECURITY ASS. of m i s

Unclassified
15.. DECLASSI FICATIOPI/DOWN GRAD ING

SCH EDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of A. abstract .nt.r.d in Block 20, If d i ff e r e n t f r om R.pof l)

18. SUPPLEMENTARY NOTES
)

19. KEY WORDS (Continue on reverse eid, if necessary end ld.ntily by block numb.r)

Real—time Garbage collection
Parallel List memory
Message—passing Continuations
Semantics of Parallelism Models for distributed computation
Storage management Partial orders of events

[9. ABSTRACT (Continue on reverse aid. If n.c..sary end Identity by block nim,b.r)

~Actor theory was invented by Hewitt and collaborators as a synthesis of many
of the ideas from the high—level languages LISP , GEDANKEN , SMALLTALK, SIMULA—67
and others. Actor theory consists of a group of active obj ects called ACTORS,
which communicate by passing messages to one another . This thesis explores
several problems associated with implementing Actor theory as a basis for
~omputer system design . First , we give a firmer foundation to the theory by 7

setting forth axioms which must be satisfied by any physically realizable —~~~

DD JAN 73 ~473 EOITION ~ ç I NOV 45 IS OBSOLETE

SECURITY CLASStFICATION OF THIS PAGE (WPien bat. Entered)

__________ ______ _________ ~~~~~~~ -~~~~~~•

-~~ -~~ - ~~. -~~~~~~ ~~ —~~~ -~--- --. .- -,r—~ ~~~~~~~~~~~~~~~ ---.- .-- --— --- .— —.-- - - —

r — — ——
‘NcuISi?Y C I A 1$$WICATIOSI O~ THIS PAS((~~SaS D . ~~~~~~~

2�~ message—pas8iflg system
. We then give an operational semantics for this

theory by exhibiting an interpreter which is a concrete model for the theory.
Thirdly, we explore the implementation questions of mapping this conceptual
system onto current hardware in such a way that simple primitive operations
all take a (small) bounded amount of t ime. In particular. the issues of storage
and processor management are investigated and a real—time incremental garbage
system for both is exhibited and analyzed.

SECURIT Y CLAS$IPICATIOH OP THIS PAG((Wlten bet. Xnt.rsd)

L1~~~~~~
_
~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

MIT/LCS/TR— 197

Actor Systems for Real-Time Computation

by

Henry Givens Baker , Jr.

March 1978

A~tESSION for

DDC B- :~~~.:~ o
UNANMC~~~

!) 0
JUS i~iCA: ,

~

BY.- . ED D C
~~~~~ . A~A~~~~nd/~~~SPECI~~ . 

~~1~J~fl nr?

~ 
~~~~~ .1 1918

This research was supported by the Office of Naval
Research under contract number N00014-75-C-0522.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

~~~~~~~S ~~~~~~~~~~~~~~~~~ . - —. - - _ -~~~
_ _  —-..-— —--- — - - - f l - -- ~~~~~~~~~~~~~~~~~~~~~~



- .—- ---~~~,_~

Actor Systems for Real-Time Computation

by

Henry Givens Baker, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on February 14 , 1978 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

ABSTRACT

Actor theory was invented by Hewitt and collaborators as a synthesis of many of the ideas
from the high-level languages LISP, GEDANKEN , SMALLTALK , SIMULA-67, and
others. Actor theory consists of a group of active objects called Actors, which communicate
by passing messages to one another.

This thesis exp lores several problems associated with implementing Actor theory as a basis
for computer systems design. First , we give a firmer foundation to the theory by setting
forth axioms which must be satisfi ed by any physicall y realizable message-passing system.
We then give an operational semantics for this theory by exhibiting an interpreter which is
a concrete model for the theor y. Thirdly, we explore the imp lementation questions of
mapping this conceptual system onto current hardware in such a way that simple primitive
operations all take a (small) bounded amount of time. In particular , the issues of storage
and processor management are investigated and a real-time incremental garbage collection
system for both is exhibited and analyzed.

Thesis Su/, ervisor:
Ca i-I Hewitt , Associate Pr ~ssor of Electrical Engineering and Computer Science

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~ 
—--.-

~~
--- --- -- --,-

~~~~~~~~~~~

- - - -

- -3-

Acknowled gments

I would like to thank my thesis supervisor , Professor Carl Hewitt , for his support and
encouragement. Carl’s thirst for simplicity and his wide ranging interests provided an
excellent sounding board for my many half-baked ideas. Thanks also go to my readers,
Professor Barbara Liskov and Professor Stephen Ward , through whom I was able to gain a
different perspective on many topics. I enjoyed many fascinating bull sessions with
Professors Vau ghan Pratt and Albert Meyer, and Dr. Peter Jessel provided me with much

personal and professional support. In spite of MIT , the graduate students and staff are
superb; many thanks to Richard Gre~nblatt , Tom Knight , and Guy Steele and many others
for their help and for,.making some of the best engineered computer systems in the world.
Peter Bishop. John DeTreville, Bert Haistead, Al Mok, and Eliot Moss also made
suggestions for improvement. Finally, my warmest thanks and gratitude go to my wife,
Carolyn , a doctor in her own right , for her love, support, and patience during these past
seven yea rs.

This thesis was typed into the MIT A.I. Lab. PDP-lO “TECO TM program (magnificently
maintained by Richard Stailman), using “DOC , a set of TECO macros written by
Vaughan Pratt. It was printed on the A.I. Lab. Xerographic Printer , after being formatted
by Alan Snyder ’s document compiler “R5.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under contract
number N00014-75-C-0522.

_______________________ —~~ —.——-~~~~~~ --~~~~~~~ — . — —

Table of Contents - 4 -

CONTENTS

Acknowledgments 3

Table of Contents 4

1. Bac 1~ground • . e e . e . . e s s s . . .e . e s es e . e .. s . e . . e s e e 8

1.1 In ciodu ct ion 8

1.2 Distributed Comput ing 9

1.3 Actors in Hardware 13

1.4 Problems with Shared Memory 16

1.5 Real-Time Systems Design 19

1.6 Wh y Actors for Real-Time Systems Design~ 22
1.7 Continuation-Passing Style 25

1.8 Outline of the Thesis 28

2. Laws for Actor Systems 30

2.1 Introduction 30

2.2 Event-based vs. State-based Reasoning abou t Systems 31

2.3 Events and Actor Computation s 33

2.4 Partial Orderings on Events 35

2.4.1 Activation Ordering —

2.4.2 Receipt Orderings 38

2.4.3 The Combined Ordering 40

2.4.4 Activities 46

2.4.5 Actor Creation and the Laws of Locality 49
2.4.6 Laws of Locality 51

2.4.7 Actor Induction 54

2.4.8 Cells 55

2.4.9 Busy Waiting and Fairness 57

--

~

-- --- .-- - — - --~~~-—~~~~~~~~~~~~~ ~~- — “— ~~~~~ --- - --

- --—- -

Table of Contents - 5 -
2.4.10 Discreteness -- A Counterexample 59

2.5 Constructive Models for Actor Theory 62

2.5.1 Caveat 62

2.5.2 Constructive Models 63

2.5.3 The Cell Model for ~A ~tors 63

2.5.4 Seas of Actor Computations 75

2.5.5 The Pure M odel for Actors 77

3. Storage Management and Garbage Collection 80

3.1 Advanta ges of List Memory over Random Access Memory 81

3.2 Allocatio n Problems of Random Access Storage 84

4. List Processing in Real Time 87

4.1 Introduction and Previous Work 88

1.2 The Method 92

4.3 The Parameter in ~= I l k) 102

4.4 A User Program Stack 103

4.5 CDR-Coding (Compact List Representation) 104

4.6 Vectors and Arrays 108

4.7 Hash Tables and Hash Links 112

4.8 Reference Counting 113

4.9 The Costs of Real-Time List Processing 116

4.10 App lications 118

4.10.1 A computer with a real memory of fixed size 118

4.10.2 A vir tual memory computer 118

4.10.3 A database management system 119

4.10.4 A totally new computer architecture 120

4 1% Conclusions and Future Work 121

~LI -~~~~ --- -.-- --~ -.----~~—

—~~~~

Table of Contents - 6 -
5. Garbage CoLlecting Activities Inorement Blly 123

5.1 Garbage Collecting Irrelevant Futures 126
F 5.2 Coroutines and Generators 129

5.3 Time and Space 13%

5.4 The Power of Futures 132
5.5 Shared Data Baces 134
5.6 Conclusions 134

6. Conclusions and Further Research 136

References 138

Biograp hical Note 145

.1

L .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Table of Figures - 7 -

FIGURES
.

Fig. I. Event Dia gram of a Gluer 45

Fig. 2. Parallel Evaluation of an Expression 45

Fig. 3. Busy Waiti ng on a Cell 58

Fig. 4. Counter-examp le to the Discreteness of the Combined Order 61

Fig. 5. FIFO Actor Interpreter 68

Fig. 6. The Cell Model for Actor Computations 72

Fig. 7. Constructive Example: t=0 74

Fig. 8. Constructive Example: t=I 74

Fig. 9. Constructive Example: t~6 74

Fig. 10. Constructive Example : t~7 75

Fig. II. A Cell Model for a Cell 78

Fig. 12. A Pure Model for a Cell 79

Fig. 13. The Cheney Algorithm 94

Fig. 14. The Minsky-Fenichel-Yochelson-Cheney-Arnborg Garbage Collector 96

Fig. IS. The Serial Real-Time Method 98

Fig. 16. The Serial Real-Time List Processing System 99

Fig. 17. Real-Time System with User Stack 105

Fig. 18. Real-Time System with CDR-Coding 109

Fig . 19. An Inf ini te Sequence of Squares 129

Fig. 20. A Lazy Sequence of Squares 130

Fig. 21. Examples of the EITHER Construct 133

Background - 8 - Section 1

1. Back ground -

1.1 Int roduction

Hardware is cAeap. Software is dear. These are the cliches of the computer industry

in the 1970’s. The proposals in this thesis will hopefully trade off slightly higher costs in

hardware for greatl y increas,~d productivit y in software. Systems savings should be

signif icant for several reasons. setter software productivit y means less time in development

and more in the marketplace. Since this increase in productivit y results in part from a more

direct mapping of ideas into programs , costs of debugging and maintenance should be less.
Because the underl ying computational model (Actors) is closer to the conceptual objects
(abstract data t ypes) of the program , fewer approximations and compromises have to be
made , resulting in more robust programs. Greater software productivity means that
softwa re costs are less, allowing for more specialized programs since decreased software costs
can be spread over fewer insta llations. In many cases, any increased costs in the hardware
will be offset b y the increased efficiency in the software--efficiency gained by exploiting
globa l instead of peephole optimizat ions.

Amp le evidence exists for the efficacy of this kind of tra deoff. The ubiquity of the
op erational amplifier instead of the simpler (to make), cheaper , and “more efficient ”
t ransistor is a result of this “mind-over-matter” tradeoff. Even though no simple, elegant
operational amplifier gate exists , it is a tribute to the mathematical elegance of this device
and its ease of use in design that integrated circuits having large numbers of circuit
elements are being made to simulate operational amp lifiers. The existence of the “op amp”
allows this sin gle concept to replace a wide va riety of rea l devices; a conceptual economy
that simplifies synthesis procedures , analyses, and inventories. Thus, the “op amp” is a
paradigm for what can be achieved when total system design costs are fully accounted for.

Of cou rse, now that op amps are the accepted standard , thei r manufacturers will
dili gently search for new gates and devices to implement this mathematical model more
chea ply. Perhaps as a result of this research a single element op amp will appear which is

L ~~~
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~


Introduction - 9 - Section 11

sim pler and cheaper than a transistor. Technology would then catch up with theory.
This thesis argues that current Von Neumann computer architecture is as ill-suited to

computer systems design as the rans istor is to electronic circuit design; it is reliable and
chea p, but a poor match to the problem domain. The system designer would like to think
abo ut high level objects like queues , data-bases, I/O streams , program modules and
operations on those objects like “insert ”, “print ”, “delete”. Current day computers offer only
bits , cha racter strings , and numbers , and the size of the objects that can be conveniently
operated on is restricted by the fact that these obje cts must be examined or moved as a unit,
i n their entire ty. Thus , one can never “get off the ground”, so to speak , because the
computer is destined to work only with those trivial entities.

Actor theory was invented by Carl Hewitt and collaborators (49,85,43,44,51,50.52] In
response to these problems as a synthesis of many other ideas about abstract data types and
control st ru~t ures [27,15,26,39). In this theory, actors and messages are the only two types of
objects. Actor systems exhibit behavior through actors sending messages to other actors,
which in turn send more messages. Actors can be created in the course of a computation ,
a nd their names can be communicated in messages without sending the actors themselves In
the messages. Hence, elements of high-level data types can be modelled quite effectively as
acto rs which receive messages indicating the high level operations that they should
perform--perhaps on themselves. The actor model also allows for concurrent processing
because man y actors can be receiving and sending messages independentl y of one another.
Thu s , in addition to the actor theory being universal , which by itself is no great prize, it

matches very well (some of) our intuiti ons about how physical , computational , and
conceptual systems work. Thus , we propose to make the actor the “op amp” of computation.

1.2 Distributed Computin g

In recent years , there has been a shift from the centralized serial computing system to
the distributed parallel colaiputing network. The large, general-purpose computer of the

IB M System/360 style is being replaced by numerous more dedicated mini and

-- -

— - -~~~ - - ____ -— rn -
~~~~~~~~~~



~~~~~~~~~~~ -~~~- - ~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- .-- ——.- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Distributed Computing - 10 - Section 1.2

microcomputers connected together by phone lines, satellite links , Ethernets , and the like.
There at e  many drivin g forces behind this shift. Since information is often produced

at a different geographic location from where it is consumed , it must be transmitted . With
the costs of both digita l communication and the smallest viable computer dropping, it is
becoming easier and more economical to digitize and edit the data at its source, so that only
the editted data need be transmitted. Response time for editting these trivial requests can
dro p dramaticall y when there is a computer on-site. System reliability may also be
improved , because the loss of a particular node or link in the network need not completely
sh ut down the system; i.e. it becomes fail-soft.

But centrali zed computing facilities are also undergoing change. The costs of CPU’s
have continued to drop until  they are onl y a small sliver of the computer bud get. The cost
per bit of memory has also dropped at the same rate, but instead of systems now costing less,
the size of memories has grown to keep the overall system cost constant. The ~64,0O0
question is “How to take better advantage of all this memory to increase throughput?”

Faster CPU’s are not the answer since they require more expensive high-bandwidth
memories , and memory cost is already the largest single cost in the system. Neither are more
CPUs the answer , because in the current “shared memory ” paradigm they must still be
connected to t h e  sa me memory, and the memory bus becomes the bottleneck.

The answer that is becoming increasingly clear is to associate some computing power
closely with each chunk of memory and replace the “shared-memory” paradigm with the
“sciciet y of computers ” paradigm. The hope is that the computation of each CPU will be
local enou gh to reduce the communication bandwidth required between memory chunks by
at lea st an order of magnitude. This arrangement allows for better utilization of the scarce
resource--memory--than any of the other alternatives.

The cost of the smallest viable computer going dow n, and its cost is going down faster
tha n its computing power. In other words, computing power has gotten cheaper in absolute
terms. However , the optimum MIPSIS does not come at the fast end of the scale, with

sub-nanosecond gates, but in the relatively slow range achieved by microprocessors on a

sin gle chi p. Therefore , massive parallelism may allow performance from these chips equal

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



.. ~-.--~ .— -~ ..~ . . .,~~~~~~~~ ,..P! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —,-—.-.---—-- —.---- .---—.—- “fl.—- -,- —.-. — — - .

Distributed Computing - II - S~.tion 1.2

to the performance of large serial computers such as the Cray-I. Mechanisms and methods
must be found which use this additional computing power to produce the answer to a given
cdmputing request faster.

This thesis investigates several problems which systems with large numbers of’
independent comput ing elements must face. First , there are cu rrentl y no good conceptual

models for th i nking about these systems. Many people are working on this problem and
offe r models with widel y varying degrees of generality and efficiency ; it is not yet clea r
where the trade off lies between these two conflicting goals. Second , while we would like to
make programs run faster on cheaper hardware , it has become clear that for a vast number
of sit uations , the cost of programming--especially testing and verification--is the limiting
factor. Therefore , we would like to move to a message-passing paradigm , but not give up
the hard-won gains in programmer productivity from advances in the serial computing art.

We attack the problem of the lack of good conceptual models through advances in the
theory of Actors. We put this theory on a firmer foundation through axioms which specify
the behaviors of actor computations. We also present a constructive model for these axioms
which can be used as a gedanken interpreter for actor computations. We argue that
event-based correctness proofs often avoid the exponential blowup of the classical “consider
all shu ffles” approach.

We attack the problem of programmer productivity on this new hardware
configuration on several fronts. It has become clear that one way of increasing a
programmer ’s productivity is to give her the tools to think about her problem in a high
level way. In other words , instead of programming in terms of bits , bytes, and blocks, the
programmer should manipulate pictures , accounts , warehouse inventories , etc. as “first-class”
data t ypes, and leave it to the compiler and/or interpreter to make It all work efficiently.

Actor theory provides a clea r conceptual model for these types of programmer-defined
data types since it unifies the concepts of program and data. An account actor, besides
containin g the data necessary to describe the account , also has a program called a scrip t
which allows the account to respond to high level requests such as: “what is your 60 day
balance?” or “credit account with payment of 520.95”. Once these high level data types have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~~~~~~~ —- .


Distributed Computing - 12 - Section 1.2

been defined , most programs wither away to a few lines of code which send messages off to
these now- act ive data objects to perform the rea l work.

However , the trouble with systems which provide user-defined data types has been
that either the programmer has to know far more about the details of the implementation
than is health y, or she has to put up with gross inefficiency and perhaps intolerable
run-time delays resulting from the automatic management of these objects.

This thesis hel ps solve one of the biggest problems in systems which tal e
responsibili ty for these user-defined data types--Me management of storage. This is
significant because as. we have argued it is not CPU time, but access to storage which is the
limitin g factor in computer performance. Since currently programmers are forced to
exp licitl y manage this scarce resource without much help from either hardware or software,
violatio ns of storage management policies are hard to detect and cause havoc when they
occur (16]. We claim that a system which uniformly and efficiently managed storage would
increase programmer productivit y manifold , especially in the program debugging stage, and
would even tend to do a better job at it than the programmer could.

There are two reasons for this. First , even though for any p articular task the
programmer can probabl y do a better job of storage management than the system, the many
small domains of exp licit storage management which result can lead to an overall reduction
in total system efficiency, because storage can not be easily reallocated when some domain
becomes full . For example , a stack overflows when there is still plenty of room left in the
hash table. This is the classica l fragmentation problem--”storage, storage everywhere, but
not a byte to munch!” A uniform , global strategy would allow the system to allocate storage
only where and when it is needed.

The other reason why a uniform system can do a better job of storage management Is
that while programmers can do a better job , they usually don’t, because they are pressed for
production , and it is not worth their valuable time to optimize storage ut ilization. ’

By freeing the programmer from worrying abou t the management of storage
(allocation a nd freeing), it leaves her more time to worry about more important questions,
such as the correctness of the program or the scheduling of various parts of the program to

L ~~~~~~~ ----. - -
~~~~

- - .



Distributed Computing - 13 - Section 1.2

achieve better response time. Time scheduling (24] Is apparently a much harder problem
than storage management , or else it is not so well understood ; hence it is more important for
the programmer to worry about the management of time than the management of storage.

(After all , human beings have many automatic systems to manage their fluids , their
ener gy resources , their ion balances , etc., but time scheduling for humans is still a very high
level f unction. In this analo gy, automatic storage management functions less like the brain
than the kidne y, which continuall y reprocesses the bodily fluids to maintain the right
environment for the more important functions.)

1.3 Actors in Hardw are

A revolution is currentl y taking place in the computer industry. For the first time,

mote CPU cycles are available than we know what to do with. This is due to the
avai labi l i ty  of microprocessors on a single chip that can be turned out almost as fast and

cheap as copies from a Xerox machine. Some of these single-chip computers come complete

with on-board ROM (for program storage), R AM (for data storage), and I/O capability,
requiring only a power supply and some I/O devices for operation.

Yet most computation remains expensive, far more expensive than these chea p
micro-computers would lead us to believe. This is because system design and programming
costs have remained high , or even increased , with the availabilit y of these cheap computers.

There are many reasons for this. First , many of the lessons learned at great cost on
mainframe computers are being re-learned at the micro-level; e.g. high-level languages can
cut the cost of programming and maintaining large systems, yet micro-computer system
developers continue to use “assembly ” languages. many without even crude macro facilities.

— 
I . One will  notice that  exactl y the same reasons hold for using a dynamic uniform paging

al gorithm instead of manual overlays to manage programs that do not fit into primary
memory. The paging system cannot perform as well on any particular stretch of code, bu t it
is uniformly good on almost all of the code because it has access to dynamic run-time
information. Therefore in most situations , the paging system does much better than manual
overlays. 

_ _ _



- 

—--—- _~ _ _ _ _ _ ___ __ ___~~_—__-—.- - r—~

Actors in Hardware - 14 - Section 1.3

Second, program development requires a quite different environment than the running
environment of the finished prodi’ct ; it requires editors, debuggers, sophisticated fi le
systems, compilers for documentation , etc. Again , micro-computer development limps along
using micro-computers themselves for editing, compiling, etc., tasks which may be
inappropriate for these devices.

Third , old habits die hard . Faced with the prospect of chea p memory and cheap
CPU cycles , programmers continue to app ly techniques to conserve memory and multiplex
CPU’s which are inappropriate for the current hardware/software cost ratios. Time, not
storage or CPU cycles , has alwa ys been of the essence, both in development and in product
performa n ce, but systems are continuall y evaluated in term s of their hardware cost only, not
the softwa re and opportunity costs which dominate.

Fourth , systems designers have missed seeing the forest for the trees. The real
bottlenecks in computing are in communicating information between modules and not in the
internal operation of any of the individual modules. Most CPU’s spend a considerable
fraction of their time waitin g for I/O devices such as disks or in seriall y searching some
small region in fast memory while the rest of the fast, and very expensive , memory sits idle.
Yet the answer is not in simply adding more CPU’s, because the bottleneck is still in the
communication l ink between the CPU and memory, not in the CPU.

What  is needed is some way of designing a system with a larger ratio of CPU cost to
memory cost so that a larger percentage of the memory is being utilized most of the time.

The answer given by this thesis is not to design systems using CPU’s and RAM’s as

separated components , with caches, sophisticated instruction sets, and clever algorithms to
get back some efficiency, but to design systems with large numbers of very simp le actors ,
each of which combi nes both a CPU and a small amount of RAM . These actors
communicate not b y interrogating a shared memory but by sending messages to one
another. The best mechanism to transmit and deliver these messages has yet to be

developed , but a full “telephone exchange” network like a Batcher sorting net (10) looks
promising.

---.-.--~ —-—~~~~~~~~~ - _ _ _ _ _



Actors in Hardware - 15 - Section 1.3

The speed and power of actor systems depends not upon the speed and power of the
i ndividual  actors , which might be very dumb and slow, but on the massive parallelism of
thousands and millio ns of these devices working in concert. The clever algorithms which
have been developed for searching on serial computers to minimize the bandwidth required —

between the CPU and RAM are not needed in an actor system where hundreds of CPU’s
can be searching their local memories simultaneously. Even if each CPU is slow, and uses a
naive search method , the search cannot take very long because each local memory is small.

We conceiv e of chips in the near future on which the large major ity of the area is
taken up by memory, and a CPU squeezed in around the margins. A few more years will
see large arrays of CPUs all on a single chip, giving the power of the ILLIAC-IV (9) but
with a good dea l more flexibil ity.

The key to the current micro-computer revolution was the realization that one did not
need all the comp lexity of the big computer instruction sets to build a Turing universal
device that  was still fast enough for many simple applications. Making the CPU simple
al lowed it to fit on a single chip.

Makin g the CPU even simpler is the key to the next revolution. Rather than trying
to get a lot of power from one sophisticated CPU working alone, we plan to get that power
by the joint effort of many simple devices working together. Each CPU should be
universal ,2 but it must also be as simple as possible so that many will fit on a chip. The
CPU does not need a clever instruction set, because it does not have to be speed or storage
optimized; e.g. ten to twenty instructions are sufficient to perform the simple tasks that are
required.

The content-addressable memory fad of the 1960’s had the right idea--increase the
memory bandwidth--but  its advocates were slightly misguided. They hoped that by adding .
a little logic--a comparator , flag bits , etc. to a memory cell, the proper tradeoff would be

2. Each element of an arra y of parallel processes need not be universal for the array to be
u niversal , viz. Conway’s LIFE game (38] or Hennie’s iterative arrays (47]. However ,
universali t y can be achieved with only a few tens of gates (7], and is therefore relatively
chea p. 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- ., 
--

~~~~~~~~~~~~~~~~~~~~~~~


Actors in Hardware - 16 - Section 1.3

achi eved. However , the protocols in a content addressable memory are too simple to make

efficient use of the communication bandwidth of the accessing mechanism. For only a “few
more” gates , one ca n add a complete microprocessor to each memory cell and have a
universal ca pability there. In this way, the messages can be much higher level than the
simp le “match and respond” messages of the content-addressable memories.

There has been considerable interest in how to apply these large numbers of

I rocessors to the solution of a single task (33]. Since the efficient utilization of a horde of
processors wi ll require a lot of communication , sorting networks have been devised [10,87]

which allow every processor in an N-processor system to both send and receive a message

on eve r y clock pulse . However , it is still not clear how to effectively utilize all of these

processors. Later in this thesis , we will make one suggestion (“call-by-future ” or “eager
evaluation ”) for keeping all of these CPU’s busy.

1.4 Problems with Shared Memory

The hallmark of the Von Neumann computer model is its homogeneous array of
read-write memor y cells , addressed by a set of contiguous non-negative integers. This

memory has been abstracted out from the computer proper as a sing le separate RAM
(random access memory) chip in many current microcomputers. The RAM chip has a set of
address lines , a set of data li nes, and a read/write line. If the chip is presented with a
non-ne gative integer on its address lines and a “read ” signal , the contents of the memory cell
add ressed by that integer appears on the data lines after a short delay. If the chip is

presented with an address and a “writ e” signal , the data presented to the chip on the data
lines is w ritten into the memory cell specified by the address.

A kry property of this RAM design Is that only one address can be presented to the
chi p at one t ime , and that address refers to only a single memory cell. This means that if
one memory location is being addressed , the others must remain idle. This might not be so
bad if onl y a few memory cells resided on a chip. However , the trend Is to put more and
more memory on the same chip. A result of this trend is that the fraction of the memory

- - p . ~~~~~~~~~~~~ - - . . ____—________

Problems with Shared Memory - 17 - Section 1.4

that is active at any one time is becoming smaller and smaller. This means that in a given
number of cycles , less and less of the memory stored in the device can be brought to bear on
the problem at hand.

One can counter thi s argument by say ing that the speed of the memory chips has also
been increas ing, and therefore that this will counteract the previous trend. However, the
speed is increasin g at a slower rate than the capacity.3 If we consider the minimum time to
examine every location as a figure of merit for a memory module (using parallel access, if

the memory allows it), then this figure is increasing with time.
The effect of this trend is to make memory less accessible than previousl y. Of course, it

has been argued that few systems take advantage of anything like the bandwidth allowed
b y the smaller chips , since usuall y onl y one of the memory chips is enabled at a time.
However , this fact is not something to be proud of.

One can also argue that if the same information must by accessed from many places at
the sa me t ime , it should be copied into separate chips or separate computer systems to avoid
the accessin g bottleneck. However , multiple copies of memory require multiple amounts of
hardware to store. True , the actual cost of the storage itself is very small compared to the
accessing network (this is true for the entire spectrum of memory devices from tape drives to
memory chips), and therefore copying the whole memory may be no more expensive than
copying onl y the accessing mechanism. Regardless of these costs though , multiple copies of
i nformation create great difficulties in keeping those copies consistent , and the
communication bandwidt h required for this purpose may cost more than keeping only a
single , but very accessible, copy.

Multiport memories hav e been developed which achieve some degree of simultaneous
access to more th an one memory location in a memory at one time; e.g. there exist small
register chips with two completely independent access channels as well as large interleaved
memory ba nks with arbiters , each of which multiplexes access from multiple sources to a

3. The speed of a memory chip is roughly inversely proportional to its linear dimension ,
while its capacity is roughly proportional to its area.

-- --

~

~~~~—-—-~~~~—~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—--  

~~~~~~~~~~~ 
--- “- ~--

-.j-.-
~-

-‘~~~~~~~~~~~~~~~~~~~~~ -
-.--

Problems with Shared Memory - 18 - Section 1.4

single memory bank. Computer systems using multiport memories and dual processors can

achieve a better processor to memory match and more through put per dollar than a single
processor operating on a non-shared memory because the two slow processors are cheaper
than the single fast processor. However, the success of cache memories closely tied to CPU’s
indicates that considerably more can be done in matching CPU performance to memories.
This is because accesses from a CPU to a memory are not random and independent , but
show a considerable serial correlation. In other word s, many of the accesses in a given time
period tend to be close to one another. By remembering in a fast cache chunks of
information which are repeatedly accessed, the communication to the main memory is
red uced. This means that for a given memory bandwidth , more CPU’s (with caches) can
have access to the same memory.

The problem of multip le copies of information raises its ugly head again , though. If
multiple CPU’s each have a copy of the same information , which is the current one? The
answer we propose is to have many CPU’s with caches, and to have only one copy of each
unit of information and no shared memory at all! Thus, if one processor is cacheing a
“memory cell”, and another wants to access it, it must either ask the first processor to
intercede for it, or the first processor must give It up to the second. The first type of
interaction is reminiscent of the simple access of a CPU to a memory, while the second is

reminiscent of the transferring into fast store a page of memory cells from a backin g store in
a vir tual memory system. The first type of interaction allows a CPU access to any memory
in the system, while the second allows the location of information in the system to be

optimized, depending upon who accesses it the most.
Thus, the complex address decoding logic of a serial computer which steer pulses from

one CPU to one of many memory locations and back can be replaced by a more symmetric
arrangement whereb y many CPU’s send messages among themselves concurrently.

_ _ __ __ _

-~~~~~~~~~~~~~~~ ~~~

Real-Time Systems Design - 19 - Section 1.5

1.5 Real-Time Systems Design

Consider the problem of the designer of a real-time system, a computer system with

numerous stimuli which must be responded to within strict time bounds. There are many
such systems in existence today, and their number is growing daily. Some examples of
real -time systems are an airplane ’s autopilot , which responds to changes in the plane’s
course , alt i t ude , or speed; the ignition and fuel injection controllers in some automobiles
which respond to changes in throttle position and load; and the distributed computer
messa ge switching centers , which must process and re-direct thousands of messages per
second .

If computer s and all their 110 devices were matched in speed so that a computer could
handle exactl y one task at a time and f inish it before starting on the next--all the while
meetin g the response times required of it--then there would be no problem in allocating
either time or space on the system. The currently runnin g task would have the whole
machine--all the processor cycles and all the memory locations --until it finished.

In a few fortunate cases, such a system design works well. However , in most cases, this
kind of a system leads either to unacceptabl y long response delays, or unacceptabl y low
util i zation of the hardware (i.e. it Is too expensive!). Thus, more efficient use of the system
resources can be gained through multiplexin g processor cycles and sharing memory among
the differe nt tasks. The execution of several tasks can then be overlapped with one another.

When many tasks must share the same memory, some management scheme must be
instituted in order that this sharing be done harmoniousl y, and with the least amount of
hogging. What mechanisms can be used to manage the sharing of memory ? If all the
different tasks must share the sa me address space, the simplest method is f ixed allocation. In
this scheme, every task is allocated its storage at system iesign time , and the task may never
u se more, rega rdless of the distribution of stimuli the system is subjected to. This scheme is
subject to storage fragmentation because a task always has enough storage for its worst case,
whether or not all tasks can achieve their worst cases simultaneously.

~~~., -— ~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~ -- - -~~~~~~~~~~~~~ - —~~~~~~~~~~~~~~~~~~ —-.-.- -.



— ..—---—- - ~9•~-~~•.-~ 

Real-Time Systems Design - 20 - Section 1.5

A second storage management policy is that of the p ool, where allocation is dynamic,
but its responsibility rests with a central facility and all tasks request storage from it in a
un iform way. However , even this policy leads to storage fragmentation. If the poo1 allows
for blocks of any size , it may reach a situation in which a block is needed and there is
enough free storage in total to satisf y the request, but that free storage is not available in
one contiguous block. Hence, the demand cannot be met. On the other hand , if the pool
allows onl y for blocks of certain sizes, then much storage is lost through rounding requests
u p to the next block size.

Therefore , for a system to make maxi mum use of its available storage , it must be able
to re-organize the storage . i.e. it must rearran ge blocks of data in memory so that free space
can be made conti guous and hence more available for allocation.

In the simp le system which had onl y one task executing at any one time without
pre-emption . each task allocated storage as it saw fit. For example , if the task algorithm
were programmed in one of today’s higher level languages , it would use a slack for local
variables and subroutine return linkages, which would grow from one end of the linear
arra y of storage cells.

If the system were extended to use a well-ordered set of interrupt priorities, then it

could allow the simulta neous execution of many tasks, all sharing the same stack , so long as
the hi ghest prior ity task finished before the next higher priority one resumed. However,
this  policy p laces great restrictions on the freedom of the higher priority tasks to allocate
stora ge, since an y object they allocate will be dc-allocated before they finish. This means
that if they want to return some information--e.g. a buffer of characters read in from some
external source--to some lower priority task , it is the lower priority task that must allocate
the space for the buffer. Hence storage is again fragmented , since the lower priority task
m ust make a worst case guess as to the size of the buffer needed.

However , a static priority scheduling policy for tasks with hard response time
constra ints  is known not to be optimal in the utilization of processor cycles (63]. A “tightest
constraint first ” policy can in many cases be very close to optimal [63), but this policy is not
a static p r ior i t y scheme and would upset the delicate coordination of the LIFO storage

- - . ,  — — - - - -rn— ,~~~~~~-~~ -.~~ . . ~~~~,—— - - - -—-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Real-Time Systems Design - 21 - Section 1.5

allocation wi th stati c priority scheduling.

For these and other reasons, such as the desire for coroutines and other control
structures more powerfu l than simple subroutining, one is forced to abandon the single
stack method of storage allocation as too restrictive and hard to program. But storage
management  with more than one stack is a problem. With two stacks, one stack can grow
from the bottom while the other grows from the top, but how does one manage three or
more stacks?

Some systems get around the problem of the one-dimensional nature of the random
access memory through memory mapping. This scheme allows every task the illusion that it
has the whole memory to itself whereas in reality it has only a whole address sp ace to itself.
This illusion is imp lemented by means of a memory map, which is a partial mapping from
the addres s space of each task into the real memory of the computer system. This mapping
from an address space to the real memory is not done on a word-by-word basis , beca u se the
cost of such a ma p would exceed that of the complete real memory for the whole address
space4 . Therefor e, the mapping is done in larger blocks called pages. However , again
storage becomes fragmented because whole pages of real memory must be allocated even
when on l y a few words of virtual memory on that page are being used.

The use of a memory map greatly reduces the amount of memory shuffling in
mult i task systems since information can be contiguous in virtual memory even when It is not
contiguous in rea l memory. However , to reduce such shuffling to a minimum , every task
should have its own map. But maps are expensive--both in terms of their hardware cost
and in terms of the storage fragmentation they produce.

It is for these reasons that list memory 5 is so valuable--not only every task , but every

4. Such a map could be implemented far more effectively as a content addressable memory,
but cheap content addressable memories have yet to appear.
5. We mean by “lis t memory ” a memory whose cell adjacency relationships are indicated
explicitly with pointers, instead of implicitly through contiguity in the address space. We
include small objects ha vin g more than two pointers under the definition of list memory,
even though the paradigm of list memories, LISP , has only, two potnters per object.



F- - 
— ,

Real-Time Systems Design - 22 - Section 1.5

lis t is essentiall y a little map to the elements in the list , and the position of those elements
can be intertwined with elements from other lists or shared with other lists, or even moved ,
so lon g as the “map ” is updated. Since the list elements are of the same order of magnitude
as a word , there is ver y little storage fragmentation due to “rounding up ”.

1,6 Wh y Actors for Real-Time Systems Design?

We have alread y argued that the standard random access memory is far from
optimum as a memory model for a real-time system. We will argue here that the standard
p roces s model for a task is also inade quate , hence the inadequacy of current hardware
schedul in g aids such as interrupts.

Most state-of-the-art real-time systems are interrupt driven , with interru pt signals on a
vectored inte rru pt  bus causing a context-switch (attention shift) in the CPU. Internall y in
the software , however , the y use a subroutine mechanism to communicate among internal
modules which uses a stack as a medium for informat ion exchange and state-saving. On
the other ha nd , actor theory is a theory of message-passing among many modules , a nd does

not distin guish between externall y and internally generated messages. It therefore unifies
the concepts of interru pt -handl in g and subroutining. In this theory , an external signal and
its corres pondin g data are packaged together into a message, which is the n presented to an
actor for processing. Whether the message is processed immediatel y or not depends on the
scheduli ng algori thm , a nd messages generated externall y are treated the same as those
generated internall y b y that  al gorithm. A control stack is not needed because each “return
address ” is re presented explicitl y in the naming environment as a continuation. A
parameter stack is also superfluous because messages are explicitly constructed from heap
stora ge. The onl y system structure needed explicitl y is the pending event structure , which
the event scheduling algorithm uses to keep track of messages in transit.

Most existin g real -tim e systems use a hardware static priority scheme to filter out high

priori ty  from low priority requests for service. This scheme meshes well with the use of a
stack for savin g the state of interrupted pr ocesses, beca use the priority levels are in a

~

- . .  
~~~~~

- . - - --~~~~~~~~-— -. . . - -
~~~~~~

---~~~~~~~~~ -, 
- - .  -.- , ..

~~~~~~~~~~~ - - ~~~~~~~ - -
~~~~~

--~~~
--



-- — -.~ 
-..

Why Actors for Real-Time Systems Design? - 23 - Section 1.6

one-to -one relationshi p with the levels of saved state on the stack. However , as we have
pointed out , th i s  scheme requires that long-term memory for the higher priority tasks be
provided for in advance , and this is both wastefu l and awkward. It is wastefu l because
storage must be provided to satisf y the largest request and not the actual request. It is
a w k w a r d , because the higher priority tasks be programmed in a manner (and perhaps even
a lan guage) different from tha t of the lower priority tasks. There will be little continuity
between interrupts to a task because no state for the higher priority tasks may be stored on
the stack. Hence, constructs such as “for” loops cannot be used in the programming of these
hi gher level tasks because they store some temporary results on the stack.

A bette r system would allow every task to be programmed relatively independently of
the others , but in the same language. For example , one should not have to know the
relative priority of a task at the time it is programmed but one should be allowed to use
ever y construct of the programming language. A system which uses a completel y separate
address space for each task has most of these properties , but the separate address spaces
make it hard for the tasks to communicate with one another. In many such systems, tasks
communicate by means of messages which are sent and received in much the same way that
infor mation is com municated between spatially separated nodes in a distributed system.
However , transmitt i ng messages between different tasks in the same computer system boils
down to a g lorified way of copying the contents of one area of memory to another , and if a
lar ge a mount of informat ion must be tran smitted , th e time to send ~.ich a message is
proportional to the length of the message, including all of its components.

It can be argued that all that copying is not necessary, if one only updates the memory
map for the receivin g process to reflect the fact that a certain part of memory now contains
the messa ge instead of what it used to contain. There are problems with this scheme
because ma pping is not performed on a per -word basis, a nd this requires that both the
sending and the receiv ing buffers begin on a page boundary and occupy an integral
number  of pages. Thus , the ave rage message size will interact with the choice of page size.
The result of work ing out all of these details is most inelegant.

L. - ~~~~~~~~~~~ . --



-

~~~~~~~

Wh y Actors for Real-Time Systems Design? - 24 - Section 1.6

Worse is the fact that the message buffer is now shared between two maps, and if the
sender now tries to construct a new message in its message buffer , it will destroy the message
being processed by the receiver! So ma~ oing the memory did not achieve what we wanted
at all , namel y passing a message, but instead achieved the non-goal of passing a buffer of
memory cells.

Since we would like to construct and pass messages and not message buffers , we must
use a different buffer to construct the messages than the one the receiver is processing, and
this requires a grea t dea l of protocol to agree on which buffers are being used and a grea t
deal of synchron ization to change buffers. Furthermore , if variable-length messages are
being sent and the receiver does not process them in a simple FIFO or LIFO order , the
problem of niana ging the message buffers becomes as big a headache as any in the whole
system. The fin al blow to this scheme is the fact that buffers not used by one pair of tasks
in their communication may not be re-used for another communication link.

Therefore , if messages are to be sent and received with a minimum of copying and a
max imum of sharing, message buffers must be allocated from a central pool of storage
shared by all tasks. (This pool must be shared by all tasks because a task may forward a
messa ge or point to it as a subpart of another message.) However , once message sharing
has gotten this comp licated , the responsibility for reclaiming and re-using old message
bu ffers must be taken away from the individual tasks , and given to the central authority,
since the indivi d ual tasks are not in the best position to know when a buffer is no longer
needed . Thus , th rough a series of logical steps we are now back in the realm of list
processing ,or the management of messages between different tasks in a real-time system.

By proposing a real -time system based on separate tasks sharing a list memory and
communicatin g by passing messages which are stored in the list memory, we solve quite a
few of the problems of real-time system design. However , a large problem which results
from mult i p lexing man y tasks on a single computer remains. This is the problem of fast
conte xt-switchin g. Modern “mainframe ” computers tend to have a large number of registers
in the CPU which must be saved on an interrupt and restored upon resumption of that
task. In additi on , many CPU’s have a cache memory which is effectively saved and restored

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Wh y Actors for Real-Tim e Systems Design? - 25 - Section 1.6

on ever y interru pt and resume, but perhaps not so obviously. These fast registers and
caches speed up the CPU in the execution of one task , but increase the time required to
switch tasks. Real-time systems , which must be able to respond quickly to external stimuli ,
ca nnot a fford to spend a long time saving and restoring the states of tasks, and must
therefore min imize the amount of state information needed to represent that task.

Acr a i n , computer designers have responded to this problem by implementing multiple
register sets in the CPU , one per process--in effect implementing a map from task number
to register set. In fact , the Texas Instruments 9900 single chip microprocessor takes this
scheme to its logica l conclusion by keeping all its “registers ” in main memory, and switching
tasks by changing the CPU register which points to the block of storage allocated for the
“registers ” of the cu rrent task! In this CPU , task switching involves the saving and
restorin g of only 3 words--the program counter , the task status word , and the register block
pointer.

This register mapping scheme certainl y solves the problem of long context switching
tinie ; a processor using it can switch contexts in only a few memory cycles. However , the
whole concept of a task as a process has become more virtual. Memory has been abstracted
into an address space and a register has become just another memory cell with a shorter
name. One wonders where this process will eventually end , and whether it might be
simpler and cleaner to use another conceptual model for programming these systems. .‘

1.7 Contin uation~Passing Sty le

We have been arguing that the standard static-priority , stack-recursive control
str uctures of present day real-time systems are inadequate to deal with truly complex
cit uatio n s involvin g d ynamic priorities and co-routines. The systems that try to handle such
sit u ations do so badl y because they must allocat e multiple stacks with all the problems that
the y cause.

— _L__ .



~1

Continuation-Passin g Style - 26 - Section 1.7

A headin g for all of these issues might be called focus-of-attention or the management
of attention because this is what a real-time system must do to respond to its stimuli. Over
the past 15 years , researchers in the field of Artificial Intelligence have concerned themselves
very much with this issue because for most of the problems in this field , the total amount of

computation can be drasticall y reduced if the attention of the computer is focussed . Since
much of this  t ype of computation involves sea rching, the mean search time over many
computations can be reduced if the search is performed by looking in the most likely places
fi rst , then the ne xt most likel y, and so on. ’

However , the orde rs of search which are easiest to program--e.g. depth-f irst searc h--do
not usuall y correspond to the most likely first ordering. Hence the computer must make
many shifts of context as drasticall y different alternatives are examined , one after another.
As a result of these need s, A .l. researchers have come to the conclusion that simple recursive,

si ngle-stack control structures are not adequate for their requirements. They have found a
need for co-routines , generators , a nd backtracking in order to focus the attention of the
computer program upon the currently most promising line to attack its most pressing
problem.

Landin [60), Reynolds [73], Hewitt [50], Steele (81,82,84), and others (35,86] have shown
that all of these control str uctures can be modelled very elegantly in a form of programming
called “continuation- p assin g ”. In the continuation-passing style of programming, the control
stack of subrout ine return points is not left implic it in the nested structure of the program,
but is made exp lic it by providin g an additional parameter in each subroutine argument
tup le called the continuation. When a procedure A is called from a procedure B with an
argument list including C as a continuation argument , procedure A computes its value
using the norma l arguments passed to it , but instead of “returnin g ” to A, it calls C with the
computed value as an argument. But since the body of C encodes all the computations
whi ch A would have done on the value returned by B, it is the continuat ion of A after the
“return ” from B. If one carries this form of programming to the limit , i.e. by everywhere
calling a continuati on argument instead of returning, then the return points are onl y pushed
onto the stack and never popped. Thus , although the control stack grows to a depth which 

_ _ _ _ _ _ _ _ _ _ _ _



____________________________ 
-

Continuation- Passing Style - 27 - Section 1.7

is pr op oi’t ion al to the length of the computation , it can be eliminated entirely since it Es
never refere nced aga in.

The control stack is not needed when programming in the continuation-passing style,
beca u se it du p licates i nformation alread y stored in the variable bindin g environment
[50,81,32]. However , this variable bi nding environment should be a tree-shaped structure to
avoid the “FUNARO ” problems which would otherwise result. The tree-shaped
environments required for the continuat ion-passing sty’e of programming can be easily
imp lemented in list storage. Since there is no control stack , all storage required by the
program can be satisfied by one mechanism--a garbage-collected heap; i.e. one uniform
mechanism provides for both the implicit storage required for bindin g as well as the explicit
storage requested by the programmer.

Althou gh a little effic iency is given up by replacing the stack push operation by a
continuation creation operation plus a variable binding operation , one immediately gains
the flexibili ty of non-recursive control structures such as co-routines , generators, and
backtrackin g.  Furthermore , if one writes cont inuations in such a way that they accept
multiple arguments , then one also gets the effect of returnin g multiple values from a
subroutine essentiall y for free. In this style , a divide subroutine can return both the
quotient and remainder from the division process with out the usual klud gery involved in
handli ng multi ple values.

Contin uation- passing style makes the programming of real-time control systems easier ,
since the logica l event causa lities of the various tasks are explicit in the text of the program
instead of bein g buried in some scheduler. When a rout ine is finished performing some
computation , it has the flexibilit y to go directly on to the next computation , whether or not
that  computation is to be done by the routine which called It. Since the state of the control
structure is exp licitl y represented in the environment instead of implicitl y in a control stack ,
there is very little state in the CPU to change in order to respond to external stimuli
quickly. All of the tasks are on the same level , instead of havin g “interrupt -level” routines ,
“high- priori ty ” ,‘outi nes, and “background” routines. Finally , since the management of
stora ge for the continuations is handled by the system, the programmer need not worry 

- .,. .-— . — -.~~~—~~~~~~~ --~~



- -

Continuation- Passing Style - 28 - Section 1.7

about where all of these bits and bytes are being allocated , but only whether the total
storage used exceeds the amount available.

1.8 Outlin e of the Thesis

Chapter 2 presents axioms for actor theory and discusses some theoretical problems
posed by theui ~. It also presents a constructive interpreter which is capable of generating all
Possible computations from an initial configuration of actors. This interpreter is not
inte nded to be used in a rea l actor system , but onl y to illustrate more concretel y a scheduling
mechanism which is consistent with the actor axioms.

Chapters 3 and 4 discuss one of the main problems in implementing an actor system
which is subject to real-time constraints--the allocation and recollection of storage. An
incremental garbage collection approach is advocated , and a method is exhibited which has
the addit ion al  property that all allocation , accessing and updating primitives are
time-bounded by a constant. Hence, the events in an actor system which uses this technique
ca n also be time-bounded.

Chapter 5 dea ls with a new problem that comes up in actor systems with large
numbers of activities and processors. An activity may be started on the presumption that
the result it wil l eventually return will be useful. However , as other activities progress in
parallel with At , this presumption may prove false, a nd the activity which is now deemed
useless ullus t be stopped and its resources returned to the system. One of the best examples
of a system which generates activities which may later turn out to be useless is that of an
interpreter for an “a pplicative ” (expression-based) language which implements
“call -by -future ”, a parameter binding mechanism which Is different from call-by-name ,
call-b y-value , call-b y-need , call -by-reference, etc. Call-b y-future is implemented by an “eager ”
Interprete r , which spawns a new activity (a “future ”) for every expression which is an
argument to a procedure. Eager evaluation may result in faster response from real-time
systems, since an act ivi t y does not have to wait until its relevancy is proven before it can be
started . The Cliurch-Rosser theorem (21,26], which ensures the invar iance of the value of

_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~ —~~ -~~~~~~~~~ . - -



Out line of the Thesis - 29 - Section 1.8

an expre ssion in these languages regardless of the order of evaluation , ca n be extended to
cove r this new evaluation order. Thus , in a language like LISP which has been extended
with call-b y- future , the value of an expression will be independent of the evaluation order
“most ” of the time , i.e. whenever the side-effects do not interfere.6

In Chapter 5, a garbage collection approach is also advocated for this problem , and a
method is found for garbage collecting “irrelevant ” (useless) activities incrementa lly.

6. Other resear chers [37,28,89) also note th at languages withou t side-effects , e.g. “pure”
LISP , are ex celle n tl y suited for the purpose of representing many al gorithms intended for

. xecution on a host of processors since their lack of side-effects eliminates a great source of
complexity in parallel execution. However , thi s kind of parallelism does not implement the
most genera l form of communication between activities. For example , an airline reservation
system cannot be implemented in such a language , due to its non-determinate behavior.

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 4



Laws for Actor Systems - 30 - Section 2

2. Laws for Actor Systems

2.1 Introduction

Althou g h there has been much previous work on actor theory (49,85,43,44,51,50,52), the
precise semantics of the orderings of events in this theory, the modes of information
propagation , ari d the role of non-deter minism have not been clear. As a result , any attempt
at a clean real ization of the actor concepts in terms of a language was difficult , beca use

these fundamental  issues had not yet been resolved. This chap ter1 attempts to clarify actor
theor y by presenting some axioms that we believe must be satisfied by computations
involvi ng communicating parallel processes. These laws restrict the histories of parallel
(actor) computations to make them ph ysicall y realizable. The laws are justifi ed by appeal to
ph ysical intui t ion , and are to be regarded as falsifiable assertions about the kinds of
computations tha t  occur in natu re rather than as proven theorems in mathematics.

Since the causal relations among the events in a parallel computation do not specif y a
unique total order on events , actor theory generalizes the notion of a comp utation from that
of a sequence of global states to that of a partial order of events. The interpretation of two
unordered events in this partial order is that they proceed concurrently.

Specifications for an actor and correctness assertions for a computation can be given
very na tura l l y  in terms of events and parti al orders of events because partial orders seem
better suited to expressing the causality involved in parallel computation than the totall y
ordered sequences obtained by “considering all shuffles ” of the elementary steps of the
various parallel processes [74]. Since inference rules can use these partial orders directly, the

number of cases in proofs is considerably reduced.2 We demonstrate some of the utilit y of
th ese par t ia l  orders by using them to express our laws for distributed computations.

I. This chapter is an expansion of some of the Ideas in the two papers “Laws for
Communicatin g Parallel Processes” and “Actors and Continuous Functional s by Carl
Hewitt and myself.
2. A. Holt [57) and I. Greif [43) were some of the pioneers of event-based reasoning.

— - - — —. . -~~ ... ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Int r oduction - 31 - Section 2.1

We present in this chapter axioms for actor systems which restrict and define the
causa l and incidental relations among events in an actor computation , where an event
consists of the receipt of a message by an actor , and results in the sending of other messages
to other actors. These axioms do not postulate the existence and fairness of some global
sched uler or oracle , even though our constructive model for this theory will use such a
global scheduler to ensure that the computations It generates satisfy all of the axioms.

2.2 Event-based vs. State-based Reasonin g about Systems

The app lication of the concept of state to sequential systems was a great advance.
This concept allowed the future behavior of a system to be completel y determined by the
abstract state of the system instead of the whole past history of the system. More formally, a
state is an equivalence class of past histories of a system , all of which are equivalent in the
sense that  the future behavior of the system given any of these past histories will be
identical. In some cases, the infinite (and perhaps uncountable ) class of histories can be
vastl y reduced to a finite set of these equivalence classes, or states. Thus, the state of a
system incorporates the “important ” part of the past history, where “important ” is defined as
being relevant to the prediction of future behavior.

Since th e concept of global state is such an important and valuable tool to the

understandin g of systems, why do we give it up? We reject it on both theoretical and
practical grounds. Relativity theory tells us that the concept of a global state for a spatiall y
distributed system is ill-defined in the sense that the relative order of many events, and
hence th e perception of the state , varies with the position (and velocity, etc.) of the observer
of the system. Therefore , in order to consistently define a global state, we must specify an
observa tion point and define the timç of an event as the instant that the observer observes
it. Al though this  can be done, one would like a more observer-independent description of
the behavior of a system. Relativity theory tells us that the direction of causality or the
direction of information flow among events is the same for all observers, and hence
dia grams of event causalit ies are theoreticall y more appropriate for spatially distributed

-rn -- - - - -~~~ ~~~~~
-- --

~~ 
-

~~~~~ 
-

~~

Event-based vs. State-based Reasoning about Systems - 32 - Section 2.2

systems.

Thus , although the concept of state allows us to factor out the Irrelevant details of a
sequential system ’s history, partial orders of events allow us to factor out the irrelevant

details of the observer of a spatial system’s position , velocity, etc. But we would also like to
fact or out the irrelevant details in the history of a spatially distributed system using a
concept similar to that of state. While quite laudable , this goal is hard to achieve. In the
case of a sequential system , the concepts of “time” and “behavior” are both well-defi ned;
“ti me” is a linear order of transitions in the system while “behavior ” is a mathematicai
function of the sequence of all inputs , or equivalently , a function of the current state and the
future inputs. But neither concept generalizes for a distributed system.

The concept of a “space-like slice” through the causal connection diagram for the
history of a distributed system may be the appropriate generalization of an “instant of time”

in a sequential system. These space -like slices are essentially collections of events that are
unordered by causality, i.e. they consist of events which could happen simultaneousl y.
Given such a slice , one could identify the local states for each object in the slice. If another
ca usal connection diagram over the same set of system elements were to contain an
equivalent slice--namely, one in which the same objects had the same local states--then the

histories of both systems (the set of events which preceded the slice) are equivalent , in the
sense that the same set of “fut u re” events could be generated. Thus, by defining arbitrary
globa l states (the slices), we can regain the ability to factor out irrelevancies in the past
histor y of a system.

Using this techni que , we can compose the histories of two systems using the same
configuration of primitive elements.

But we also reject the notion of a history of a system as being a sequence of global
states on practical grounds. Suppose that our system consists of n totally independent parts,

each havin g a local state set of size m. Then the global state set consists of m~ different
states , a number which for reasonable m and n is totally intractable if each state must be
checked for some property. Of course, the parts in any interesting distributed system will

_

Event-based vs. State-based Reasoning about Systems - 33 - Section 2.2

not he comp letel y independent , but even so the size of the total state set will remain an
exponential functi on of the amount of parallelism in the system.

2.3 Events and Actor Compu tations

In a serial model, computations are linea r sequences of global states, and each state in
the sequence determines the next state by consulting either a program text (Von Neumann
stored program computer), or a finite state control (Turing machine model). In the actor
model , we generalize the notion of computation to be a partial order of events in a system,
where each event is th e transition from one local state to another.

The theor y presented in this chapter attempts to characterize the behavior of
procedural objects called actors (active objects) in parallel processing systems. Actors,
messa ges, and events are the fundamental concepts in the theory. Actors interact through
one actor sendin g a message to another actor called the target (of the message). The receipt
(and processing) of the message by the target is an event , and these receipt events are the
basic steps in the actor model of computation.

New actors and messages can be created in an event in the course of a computation.4

Indeed , almost every message is newly created before being sent to a target actor.
Events mark the steps in actor computations; they are the fundamenta l interactions of

actors. Each event happens instantaneously, i.e. indivisibly, requiring no duration in time.
— Every event E consists of the receipt of a message, called message(E), by a ta rget actor,

called target(E) . We will often use the notation

3. In Hegel’s terms , our thesis is really an antithesis to the thesis of global state , especiall y
the provin g of properties of p arallel systems based on global state transitions. Of course as
Hegel pointed out , sy nt hes is follows thesis and antithesis , a nd we have indicated a possible
direction for this synthesis in the equiva lencing of certain space-like slices. However , since
a n t i thes i s and not synthesis is our intent , we will ar gue here for a theory of events and local
states rather than globa l states.
4. The creation of an actor is not itself an event; actors are created as side-effects of other

events. We denote the eve nt which results in an actor x being created as the creation event
for x.

_ _

- .
~~~~~~~~~~~~~

--
~~
,-

~~~~~

~~~~~~~~~~~~~~~
-

Events and Actor Computations - 34 - Section 2.3

E: CT <~~~~ M]
to indicate that  event E consists of the receipt of message M by target T.

An event is th e receipt of a message rather than its sending, because the message
cannot a ffect the behavior of its tar get actor until it is received. If the sender wishes a reply,
the message should contain as a component a continuat ion, i.e. an actor to whom any reply
should be sent.

Intu i t i vely,  the recei pt of the message M at the target T makes M’s information
available to the tar get for the purpose of causing additional events by sending messages to
other actors. The receipt of M by T does not in itself cause any change to either M or T;
however , T may decide after receiving M to remember all or part of M.

Due to the tota lity of the “receipt order ” for each actor (to be defined later), we may
spea k consist entl y a bout the loca l state of an actor. This local state is completely encod ed as
a vector of acquaintances , which encodes the names of other actors this actor knows about at
this time. A na~ne in this vector is just enough information to allow this actor to send a
messa ge to the denoted actor.

Therefore , for each even t E, we can define acqs~ (T) to be the vector of immediate
ac quaintan ce s of T “j ust before” the event E. We now stipulate that this vector is of a fixed,
fi nite length ; i.e. that  the length of an actor ’s acquaintance vector is fixed for the life of the
actor .

~~~~ of Finite Acquaintances: For all actors x and events E such that x—target(E), the vector
acqs~ (x) has f ini te length. For all events E1, E2 such that ta rget(E1)—tar get (E2)—x ,
length(acqs~~(x)) =length(acqs~~(x)) .

This restr ic ti on is not meant to discourage the use of arrays with flexible bounds.
However , they cannot be primitive in our system because in order to satisfy real-time
constraints , we w ant all primitive operations to be (in principle) time-bounded by constants,
and all known methods for deal ing with such arrays require time growing with the size of
the array.

- - ~~~~ ~~~---.- -~~~~~~~~~~~ - _ _ _ _ _

Events and Actor Computations - 35 - Section 2.3

The A-express ions of Church ’s A-calcu lus [21,26] may be modelled by actors which
receive th e ir ar guments as messages. In this case, the expressions bound to the

f ree varia bles of the A-expression x become the acquaintances of the actor modelling x. Due
to the properties of the A-calculus , those acquaintances may not change over time; i.e. if
actor y models a A-expression , then for all events and E2 in which y is the target ,

acqs~~(y) — acqs~~(y).

In order to implement interproce ss communication between parallel processes, It is
necessa r y to use actors whose acquaintance vector changes over time. One purpose of this
cha pter is to axioma tize the fundamental laws which govern the behavior of such actors.

An important examp le of an actor whose immediate acquaintances change with time is
a cell. A cell’s acquaintance vector has exactl y one element--its contents. When the cell is
sent a messa ge which consists of the request “contents? ” and a continuation (another actor
which will receive those contents), the cell is guaranteed to deliver its contents to that
continuat ion. When the cell receives a message with the command “store y!” and a
continuation , the cell for gets its previous acquaintance by updating its acquaintance vector
to hold y, and then info rms the continuation that the command has been obeyed. The
beha vior of cells will be discussed later in more detail.

2.4 Partial Orderings on Events

In order to develop a usefu l model of parallel computation , we ha ve found it desirable
to genera lize the usual notion of the history of a computation from a sequence of states to a
P art ia l orde r of events. Thus , a history of an actor computation is a partial order which
records the causal and incidental relations among events. It is an upper bound on the
amount of par allelism that can be used in an implementation , e.g. any two unordered events
could be executin g concurrently on separate processors. However , there is no requirement
that an imp lementat ion do this. An actor computation may be simulated by executing the
event s in any order which is consistent with the partial order defined by the history.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—--- --

~~~~~~~~~~~~~~
-.-

Activation Ordering - 36 - Section 2.4.1

2.4.1 Activation Ordering

One important strict partial ordering on the events in the history of a computation is
derived from how events activate one another. Suppose an actor x 1 receives a message m1 in
an event E 1 and as a result sends a message m2 to another actor x2. Then the event E2 in
which m2 is received by x2 is said to be activated by E1, i.e. E1 is the activator of E2. We
call the t rans i t ive closure of thi s “activation ” relation the activation ordering for a particular
actor computation and if E1 precedes E2 in this ordering then we write

E14,> E2.

2.4.1.1 Laws for the Activation Orderin g

It is not possible for there to be an infin ite number of events in a chain 5 of activations
between two given events in the activation ordering of the history of a computation. Stated

more fornia fl y:

Law of Fin ite Activation Chain s between Events: If C is a chain of events in the activation
ordering from E 1 to E2, then C is finite.

The law of finite activation cha ins is intended to eliminate “Zeno r’~~chines ”--machines
which compute in fini tely fast. For example , consider a PDPIO which executes its first
instruction in I ~isecond , its second in 1/2 Msecond , its thi rd in 1/4 psecond , and so on. This
machine not onl y could compute everything normally computable in less than 2 ~*seconds,
bu t could also solve the “halting problem ”. It could do this by simulating a normal PDPIO
running on some input , and if the simulation were still running after 2 Mseconds, it could
conclude tha t the simulated machine did not halt on that input.

5. A chain is a totall y ordered subset of a partial order.

“-- - - --- - - - — - - - - -
~~~

.-- - --. -. .. -- 



Laws for the Activation Ordering - 37 - Section 2.4.1.1

It is intuitivel y reasonable that an actor can construct and send only a finite number of
messages in the instant that is an event. Therefore , one event can activate onl y a fi nite
number of other events. The events directl y activated by an event E are called the
i,nmediate successors of E under the activation ordering, or immediate activation successors of
E. The set of immediate activation successors of E, written succ~~>(E), has the formal
definitio n:

succ~~>(E) E {E’I E+.>E’ and -‘3 E” such that E..>E”.+> E’J.
Then we have the followi ng law:

Law of Finite Immediate Activation Successors: For all events E, the set succ~,,,(E) is finite.
We also define i mmediate predecessors for the activation order in a manner analogous

to that  used for immediate successors.

pred~~,,(E) E {E’l E’..>E and —‘3 E” such that E’.+>E” .+>E).
We now postulate that an event is either an initial event , i n which case it has no

immediate predecessors, or it is activated by a unique predecessor event.

Law of Unique Activator s: For all events E, the set pred~,,,(E) contains either zero or one
element.

Each event E has at most one activator event activator(E), because anessage(E) is the
only message received in the event E and because ;nessage(E) can onl y be sent by one event ,
wh i ch is required to be act ivator(E).

What does this activation ordering look like? Since each event has at most one
activator , and no infi nite preceding chains , th e ordering is a forest of trees having the
ini t ia l  events as roots. Since the branching is restricted to be finite at every nod e, each tree
is finita ry.

Note that because an event has only one activator, the j oin part of fork-join behavior
cannot  be a n a l yzed using onl y the activator ordering. We will see later that  havin g un~1~ e
activators forces an asymmetry in the analysis of joins because the last event to arrive at the

_ _



_

Laws for the Activation Ordering - 38 - Section 2.4.1.1

join is the one which activates the remainder of the computation. Thus, the symmetry of a
“j oiner ” actor 6 is not a foregone conclusion from the basic axioms of actor theory, but must
be proven.

2.4.2 Rece ipt Orderings

Intui t ivel y, the acti vation ordering can be identified with the notion of “causality ”,
since each event is “ca used” by its activator event. However , the activation ordering is not
enough to specify the act ions of actors with side-effects , such as cells. For this reason , we
introduce the receipt ordering 

~~
>x for an actor x which records the order of receipt of

messages sent to x after having been ordered by an arbiter. Note that there are only a few

primit ive actors such as cells and synchronization primitives which actually care about the
order in which messages arrive.

2.4.2.1 Laws for Recei pt Orderings

The receipt ordering for each actor x is required to be a total ordering on all events
which have x as their target. This policy is enforced by arbitration , i.e. if two messages
arrive in close proximity to x , its arbiter device will arbitrarily decide which is to be
received by the actor first.

~[ Tota l Receipt Orders: if E1 � E2 and target(E1) — target(E2) — x , then either
E1 ~~

>x E2 or E2 ~~
=>

~~ 
E1.

This law states that  either message(E 1) is received before message(E2), or vice-versa.
We note that  there is no necessary relation between the order of receipt of two

messages at a tar get and the ordering of their activators. Suppose that events E1 and E2
both have the same ta rget x. In a serial computation , E1 —-> ,~ 

E2 would imply that
E1.i> E2, but i n a parallel computation , E1 and E2 could be parts of two separate processes

6. Later , we introduce a particular kind of “jo iner” actor called a “gluer”.

____________



Laws for Receipt Orderings - 39 - Section 2.4.21

unrelated via .+>. Furthermore , the fact that activator(E 1) precedes activator(E 2) in the
com putation is no guarantee that E1 ==> ,~ E2 because inessage(E1) could take a longer route
t liati the message(E2), or be delayed by an arbiter.

If an actor x is created in the course of a computation , then prior to any given
message which it receives, it could only have received finitely many other messages.

of Finitej~ Man y Predecessors ~~~ . tj~~ Receipt Ordering : If an actor x is created in the
course of a computation , and target(E) =x , then (E’IE’ 

~~~~~ 
Ej is a finite set.

The above law is used to guarantee that the process of repeatedl y taking the precursor
of an event will event uall y stop, i.e. no receipt ordering is an infinite descending chain.

Given an event E1: IT <~~~~ M 1
) and an event E2: IT <~~~~ M2

], there are only a finite

number of events between the two in the receipt ordering ==>T Stated more formally:

Corollary : For all events E1, E2 such that ta rget(E1)—ta rget(E2)—x , {EIE 1 — — > , E ——> , E2} is
fini te .

This law eliminat es anomalous behavior like the following: a cell receives an infinite
sequence of “store!” commands: “store I!”, “store 1/2!”, store 1/4!”, “store 1/8!”, etc. and then
receives a “content s?” request. What is it to rep ly to the continuation? Zero? But zero was
never explicitly stored into the cell!

The Law of Finite Chains in the R eceipt Ordering allows us to define Immediate
predecessors and immediate successors for this order ing in a manner similar to the one used
for the activation ordering. Since the Receipt Order Law guarantees that the receipt order
for each actor is total on its domain , immediate successors and pred ecessors are unique,
when they exist. If an event E has an immediate predecessor in

~=> target (E) it will he

called the precursor of E and will be denoted precursor(E).

One of the simplest examples of an actor which depends upon its receipt ordering for
well-defin ed behavior is the cell. The cell is the actor theory analogue of the program

variable in modern high-level programming languages in that it has a value which can be

changed throu gh assignment. This value is encoded as the cell’s single, changeable

~

-—

~

~~~~~~~~~~~~
Laws for Receipt Orderings - 40 - Section 2.4.2.1

acquaintance which is initialized to the name of some actor when the cell is created . A cell

responds to two types of messages, “contents?” requests and “store!” comman4s. When a cell
receives a request [contents? reply-to: c), the cell sends the name of its acquaintance to the
acto r c. When a cell receives a command [store! y reply-to. c], it forgets its previous
acquaintance, memorizes y as its new acquaintance, and then sends an acknowledge message

to C.

We will disc uss cells more formally in a later section.

2.4.3 The Combined Or dering

Since the events in any legal actor computation must be consistent with both the
activation and receipt orderings , they must be consistent with the transitive closu~! of the
unio n of the two. Hence, we introduce the concept of the precedes relation , “-->“, whi ch
combi nes the restriction s of both of these relations.

Definition: “-->
~~ is a binary relation on events which is the transitive closure of the union of

the activation ordering “.+> “ and the receipt orderings “ =
~~

>
~~ 

“
, for every actor x. In

mathematical notation ,

--> E (..> U U >
~ 

)
~‘x

In order for “-->“ to function as a precedence relation , the next law requires that the
activation and arr iva l  orderings be consistent. The Law of Strict Causality states that there
are no cycles allowed in causal chains; i.e. no event in any history of any actor system
precedes itself. Stated more formally,

Law of Strict Causal ity : For all events E, It is not the case that E-->E.
This law does not follow from the properties of the activation and receipt orderings,

and counterexam ples can be easily generated.

hiii1~.. ._ -.-_ - ~—.--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~—


-. --~- - .- - .~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ -
-,

~~~~~~~~~~~~~~ 
. - - -

The Combined Ordering - 41 - Section 2.4.3

Now the immediate predecessors and successors of an event in the combined ordering
a re the UnIO nS of its ~rnmediate predecessors and successors in the constituent orderings.
Ther efore , an event has at most two immediate predecessors--its activator and its
precursor --and at most a finite number of immediate successors.

We would like to for malize the intuiti on that between any two events which are
causall y related , there are only a finite number of events in the causal chain which links the
two. We therefore have the following law:

Law of Finite ~nter mecliate Chains in the Combined Order (Discreteness of the Combined
Order) : Given two events E1 and E2 in an actor computation , there does not exist an
infini te  chain in --> between E1 and E2.

This law has a corolla ry which is even stronger:

Corollary : Given two events E1 and E2 in an actor computation , there do not exist an
infini te  number of events between then in “-->“; in other words, the set

(El E1 --� E --� E2 )
is f ini te , for every choice of E1 and E2.

Proof: For any arbitrary choice of E1 and E2, let S denote the set described in the statement
of the corollary. Suppose that S were infinite. Now S has a spanning tree in “-->“ with

as its root , so S contains an infinite tree. What is the maximum number of branches
protruding from any arbitrary node in this tree? The immediate successors in “-->“ of a
node are the immediate successors of that node in “..>“, plus the successor of that node in
the receipt ordering for that  node’s target , if such a successor exists. It then follows from
the Law of Finite Immediat e Activation Successors that the immediate successors of a node
in “- -> “ must be fini te , hence the number of branches in our tree protruding from any node
must also be fini te.  Hence the tree is finitary. But then by Kön ig’s Lemma , this infinite
tree must contain an infinite chain. Since this contradicts our Law of Finite Intermediate
Chains in the Combined Order , the corollary stands.



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -

The Combined Ordering - 42 - Section 2.4.3

QJ D
While this law and corollary would seem to be a consequence of the discreteness laws

for each of the constitue nt orderings, plus the consistency requirement for the combined
ordering, it is in fact independent of those laws, as the counterexample in a later section will
show .

2.4.3.1 Fork-J oin Behavior

In programming languages for parallel processing , it is necessary to provide primitives
by which a process can “fork” by splitting into several processes which can later “join ”

together ag atn.  This allows for the processing of one branch of the fork to overlap with the
processing of the other fork , thus allowi ng for a reduction in the time to complete the
overall task , assumin g th at  sufficient hardware is available for such concurrent processing.

The pa r allel (collateral) evaluation of the arguments for a procedure call provides a
very common and n a tura l  example of such fork-join behavior. Suppose, for example , that

we are interested in computing the value of “a2.b2” for some a and some b. In order to
reduce the computation time , we would like to evaluate a2 and b2 in parallel before
summing t h e  results. To evaluate these two arguments to “.“ i n parallel , the evaluatio n
procecc must split into two sub-processes , each of which evaluates one argument. ‘hen
both have been computed , they must be brought back together to form an argument pair
which is then sent to the “.“ procedure. This process of combining the results of the two
parallel processes is a form of spi c/ir oniza t ion between the two processes, beca use more than
likely one will  f inish its evaluation before the other and therefore have to wait.

We can si mulat e this form of synchronization with a primitive actor called a gluer ,
which accepts messages from two different sources, glues them together into a single
messa ge. a nd then sends them to a continuation which was supplied when the gluer was
created. A more formal description of a gluer is given below.

.—.

~

-..---

~

i- —---.-— .—.-..—--- .-.— -- - ~.-- . - -~~-~~ -~~~- -,--~~~~~~~ --



Fork-Join Behavior - 43 - Section 2.4.3.1

Althou gh a gluer requires an arbiter in front of it to keep from receiving two messages
at the same time , and hence getting confused , its behavior is symmetrical. The particular
order of receipt of those messages does not matter since the gluer does not activate any other
event un ti l  it has received messages from both of its senders, i.e. the last message received
activate s the sending of the combined message to the continuation , regardless of the source
of that  last message.

Gluers allow us to factor the work of an actor which receives parameters from several
different sources into two parts: a gluer which receives the differ ent parameters and binds
then together into a single message, and the computational part of the actor which performs
t h e  intended operation on the multiple operands which the gluer has brought together. In
a n actor simula tion of the data-flow computational model [28], every multi p le-input operator
would require a gluer to g lue one token from each input arc into one composite token which
would tri gger the actual computation.

However , a gluier is different from a two-input dataflow operator because it has onl y
one input  por t through which it can process messages, and these messages are arbitrated to
a rrive in a total orde?. Therefore , althou gh the gluer is entirely symmetrical in that its
output  is independent of the order of receipt of the two different flavors of messages, it is
i nherentl y a serial device , like every other actor, which is capable of receiving only one
message at a time. Because of its abilit y to glue together different messages which arrive at
differe nt times , i.e. it gathers together data presented to it seriall y, the gluer is a sort of
“serial-to -para llel” converter. 7

We now a n al yze an examp le of fork-join behavior using this glueing primitive.

2.4.3.2 Formal Description of a Gluer

There is a primit i ve actor , call ed create- g luer , such that whenever it receives a message
of the fo rm [sink:S rep ly-to:R), it creates a new gluer actor C, whose sink is S, and sends it
to R. 0 then accepts messages of two forms: [left: x) and [right: y], where x and y are
arbi tra r y actors. If C receives a message of the form (left: x) and has previousl y received a



Forma l Description of a Gluer - 44 - Section 2.4.3.2

messa ge of the form [right: y], it sends a message of the form [reply:(x y]] to S. If C receives
a message of the form [right: xl and has previousl y received a message of the form (left: yl
it sends a message of the form [reply:(x yll to S. Thus, a message of the form Ueft: xl is a
“left-hand component ” and a message of the form (right: y] is a “right-hand component” of a
final  messa ge to the sink S. Note that if in a computation , m left-hand messages and n
ri ght hand messages are sent to the same gluer , then the gluer sends m~’n messages to its
sink , these rn:r i messages consisting of all the combinations of left hand and right hand
messages.

Figure I below shows an event diagram of the general kind of gluer described above,
while Figure 2 shows the diagram for the collateral evaluation of the expression “a2.b2”.
We note tha t  in the latter case we have two possibilities for the event diagrams, depending
upon which multip lication sub-expression returns a value to the gluer first.

7. Because of this restriction on actors that they can receive messages onl y one at a time,
one mi ght conclude that they are not as powerfu l or as fast as a data-flow operator , which
can accept d a ta  on al l its input ports “simultaneously ”. The truth is, in order to physically
perform the synchronizati on required , whether in actor theory or dataflow , the control
information about which operands are ready and which are not must all propagate to a
single point in space at which , according to the assumptions of actor theory, the signals will
all ar rive in some order and not simultaneousl y. Normally, an arbiter that decides which
signal arr ive s  first takes time inversely proportional to the time difference of the arrivals.
However , since (lie result of a gluer is the sa me in either ca se, it should not need an arbiter
on its input ; i.e. since a gluer does not reveal its decision about the order of arrival , it might
be able to use a different circuit than a standard arbiter. This circuit might even be faster
because the theoretica l arguments against fast arbiters would not apply to gluers. This
argument is a gross simplification of some of the ideas of quantum theory, but it should
retain some vali dity.

________ ~ . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- - -

~ ~~~
- . -

~~~~~~~ 
—

~~~~~~~
— —

~~ 
- —

~~~~~~ 

-

Formal Description of a Gluer - 45 - Section 2.4.3.2

Fag. i. Event Diagram of a Cluer
(create-çjl uer <~~~ (si nk: S, reply—to: H) I

+
V

A <~~~ (reply: 6)
+ +

+ +
+ +

V V
C ~~~~ (left: xl c’-— G<~ w (r i ght: yl

+
V

S ~~~~ [rep ly: (x y]]

Fig. 2. Parallel Evaluation of an Expression
“ Xxy .x2+y2” ~~~~ Large: (a bJ , reply-to: C]

+
V

create-g l uer <s’— (sink : 5, rep l y-to: RI
+
V

R ~~~~ (rep ly : 6] -

+
+++++++++++++++++++++++++++++++++

+ +
V +

* ~~~~ (args: (a a) reply- to: Gil +
+ V
+ * <~~~ large: lb bi rep l y—to: 62]
V +

<-.~~ (reply: a2) +

+
-

V
+ 62 <~~~ (reply: b21
V V

C <~~~ (left: a2] G <~~: (ri ght: b2)

S <~~~ (reply: (a2 b2]]
+

V
+ <—~~ large: (a

2 b2) reply—to: C)

~~~~~~~~~~~~~~~~~



Formal Description of a Gluer - 46 - Section 2.4.3.2

Figure 2 requires some explanation. The original function x2.y2 is sent a message
consisting of the ar guments  a and b and a continuation c to whom the final value of a24b2

should he sent. The function then creates a continuation actor R which will receive the
newly created g lui er and start the parallel evaluation going. The function also creates a
continuation actor S which will handle the message generated by the gluer when it has
glued the two sub-results together. The sub-processes are then started in parallel with small
subsidiar y continu ations G~ and C2 which append a “left” or a “right ” indication to the
results of the fi rst or second sub-computat ions , respectively. Finally, the two
sub-computations both repl y to C throu gh C~ and G2 and the glued result is passed onto
the “.“ actor b y means of the continuation S.

This example is more complex than absolutely necessary because we wanted to
separate out the synchronizati on handlin g functions C1, C2, C, and S from the
computat ional  functions “s:’” and “ .“ . In fact , from the dataflow point of view C~ and 02 are
acting simply as the left and right input arcs to the summing operator “+

“
.

These gluers bear an interestin g relationship to the “tokens” of Ward and Halstead
[96,45]. One of their tokens is an actor with two “ends”, i.e. ports at which it can receive
messa ges. One of the ends is the “input ” port , into which messages are sent which are to be

- 
retrieved from the other end , the “output ” port. When the output port receives a message
[output-to: SJ. S becomes permanently connected to the token as a sink. S will immediately
receive the backlog of messages that have already been sent to the input port .of the token ,
and will henceforth receive every new message the token receives on its input port.
Halsteaci claim s that tokens can simulate gluers, but not vice versa, and hence are more
primitive. See [45] for more details.

2.4.4 Activities -

Hewitt (49,50] has shown how many types of program control structures such as
procedure invocation, recursion, backtracking, and parallel evaluation of arguments can be
easily analyzed as patterns of message-passing among the actor-like modules of a 

~~~~~~~~~~~~~ . 


Activities - 47 - Section 2.4.4

programming system. We would like to characterize one of the most common of these
patter ns, the request-reply pattern , as a goal-directed activity.

Intuitivel y, a goal-directed activity starts with a request event , in which an actor
receives a message containin g I) a request for a computation , 2) some arguments for that
computation , and 3) the name of an actor--the continuation--which is to receive the reply
when it is ready. The activity then consists of all events which result from the request,
directly or indirectly, up to and including a reply event. The repl y event consists of the
receipt of a reply message by the continuation actor specified in the request event for the
activit y.

More formally , let E--� denote the set of events which follow E (including E itself) and
--aE denote the set of events which precede E (including E) In the computation . —

E--�. . {E ’I E - - -E’ o r E = E ’ J

--�E~~(E’ lE’ -->- E or E’— E }
Then the goal-directed activity corresponding to a request event E

Q in a

~:
mP tat i0hi is the set of events which follow E~~ but precede any reply ER to the request;

E~~-� ~ UL--~
ERI ER is reply to E~~

Goal-directed activities embod y the notion of the nesting of activities that is produced
by the standard subroutine-calling of conventional programming languag~s. For examp le, a
request to the “tangent ” procedure might result in requests to the “sine” and “cosine”
procedures , and replies from them , before the tangent of the argument is returned as the
rep ly to the outer request.

Several thin gs should be noted from this definition. First , there may be no reply
whatsoever to a request , which means that the goal-directed activity consists of a single
event , the request. Since a goal-directed activity is meant to include only those events which
eventuall y led to th e repl y, there may be none if no reply was ever made. This type of
behavior is to be expected from functions which are partial , due to oversight or

F—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.---- ~

Activities - 48 - Section 2.4.4

incompleteness.

However , j ust because the goal-directed activity is empty does not mean that no events
are occurring. Many events may be takin g place which contribute to no request ’s reply and
hence are wasted. These lines of computation can by definition be eliminated without
a ffectit i g the results of goal-directed activiti es. The problem of detecting and eliminating
this wasted computation is considered in a later chapter of this thesis.

It should also be noted from the definition that some goal-directed activities consist of
exactl y two events , the request and the reply, with no intervenin g events. This means that
no requests to sub-activities needed to be sent in order to process the request ; the answer
was av ailable immediately. We call these activities pr imitive activities , because they cannot
be f urther decomposed; the buck stops here. Primitive activities are necessary, beca use they
are where the rea l computational work is done.

Final l y. the definition for goal-directed activities allows the possibility that several
replies may be made to the continuati on of a request. This is because in some patterns of
passing messages, an activit y might act like a non-deterministic genera tor, returning every
a nswer which was p laus ible , rather than a single correct one. However , this may not be an
interest ing p attern if the number of replies is unlimited , because since no acknowledgments
are required fr om the receiving actor to continue the replies, the pattern allows for no way
of stopping the replies.

2.4.4.1 Concurrent Goal-directed Activities

Intui t ively ,  several activities may be proceeding in a computation at the same time.
We can fo rmalize this through the notion of concurrent activities. Two activities are
concurrent if their request events are unordered , Ic. if their request events are concurrent.
A n interesting situat ion arises if concurrent activities overlap, i.e. share some events. This
can happen if (and only if) the activities both involve sending messages to the same shared
acto r. If two concurre nt activities involve only pu re actors , and these pure actors are freely
copied to avoid arbitration bottlenecks , then goal-directed activities are properly nested ,

—--“--- . —-- --~~~~~-- 
- —..

~~ _ _ _ _ _ _ _ _ _ _ _ _ _



-- - - — — - — — — - , -
~

-- -— - -
~

-— - - --~ -—---~ - - - -—---

~

--.

Concurrent Goal-directed Activities - 49 - Section 2.4.4.1

meaning that  two activities are either disjo int , or one is a subset of the other.

2.4.4.2 Homomorphisms of Computations

The notion of activities allows one to vary the level of detail used in modelling a real
system with actors. Whereas in a crude model an activity might be primitive , with no
inter mediat e events between a request and the corresponding repl y, a more detailed model
could use an act ivi ty with a whole host of intermediate events and sub-activities. If the
i nternal workings of this activ ity were independent from the rest of the computation , then
suppressing this extra detail should not detract from an understan ding of the rest of the
system.

2.4.5 Actor Creation and the Laws of Locality

In many models for distributed computation the ensemble of processes or actors is
fi xed at the time the computation is initiated. The communication patterns within this
fi xed collection of objects can be ascertained (or at least bounded) before the computation
starts , and therefore every object knows at the time the computation is started exactl y which
other objects it may send messages to and which other objects it may receive messages from.
As a result of this restriction , no actor names need ever be passed in messages. if an actor A
ever needs to distin guish the messages it sends to an actor B from all the other actors which
mi ght  also send messages to B, A need onl y include a small integer which would distinguish
it fro m the other actors who might also send messages to B. Then B can use this small
i nteger to look up in a small , constant , local table generated at initializatio n time to
determine who sent the message. Thus , global actor names would not be needed at all.

However , in the general actor theor y presented here, new actors may be created in the
course of a computation. This abilit y, while adding considerabl y to the power of actor
systems , also adds new dime nsions to their subtlety.

-

~ 

- . . -- ~~~~~- -.-—- - - - ---- -- -. - - -~~~~~~~~~~~~ - ----—- -- ----



Actor Creation and the Laws of Locality - 50 - Section 2.4.5

The creation of new actors at run-time implies that the names for some actors are not
known at in i t ia l i zation time. Hence, if these new actors are ever to be sent messages by any
acto r other than  the one which created them, it must be possible to pass their names around
in messages.

By far the greatest use for these newly created actors is that of continuations. To
implement the standard call-return sequence in an actor system the caller of a “subroutine ”

will include an additio nal continuation parameter in the message it sends to the subroutine.
This continuation is an actor whi ch will receive the value computed and returned by the
sub routine; hence , it p la ys the role of the “return address” in less sophistica ted systems.
Since i n most cases , the behavior required of the continuation for a partic ular call is not
known unt i l  just before the call , the continuation must be newly created when the call is
made (i.e. when the parameter-continuation message is sent).

This ab i l i ty  to create new actors in the midst of an actor computation and pass their
names around means that not onl y may new nodes be added to the network connecting the
actors , but the topology of the network connecting the existrng actors may change over time
as actors are introduced to each other and forget old acquaintances .8 Bu t even worse, it

makes no sense to ask of such a network what the global connection pattern looks like even
in theo; y. This is because the connection pattern changes over time and because there is
relativistic ambi guity about the precise ordering of changes not already ordered by the
general precedes re lation. One would have to define the relativistic notion of a “space-like
slice” through the computation and spea k of the connection pattern relative to one of these
slices in order to gain a consistent meaning to the topology of an actor computation at a
given “point in time”.

Definition: The target(E) and the message(E) and their immediate acquaintances will be
called ~he immediate p articip ants of the event E. The immediate participants of an event

8. This does not contradic t the fact that the length of an actor’s acquaintance vector does
not change over its lifetime. It only means that one acquainlance may be forgotten in the
process of acquirin g a new one.

__ -



Actor Creation and the Laws of Locality - 51 - Section 2.4.5

a t e  exactl y those actors which can be “known ” in the event without the sending of any more
messa ges.

partic ipai ils (E) {target(E), message(Efl u acqs~ (target(E)) U acqs~ (snessage(E))
We then hav e the intuit ive corollary of the law of Finite Acquaintances that only

finitel y many objects partici pate in a single event.

Corollary : For each event E, par tici pant s(E) is finite.
Intuit ively,  the c -eat ion of an actor must precede any use of it. In order to state this

i ntui t ion as a law , we must be more precise about when actors are created. For each actor x
whi ch is created in the course of a computation , we shall require that there is a unique
eve nt creation(x) , in which x was created.

Let created(E) be the set (possibly empty) of actors created b y the event E, i.e. the set
of actors which clai m E as their creation event. Note that x cannot participate in
cr eatj o II (x) because x does not come into existence until after creation(x) has occurred.

Definition: created(E) ~ {xlcreatio ii(x)=E}.

of Creation before Use: If an actor x is created in the course of a computation and E is
a n event with target x , then creation(x) --� activator(E).

The intuition that a single event create only finitel y many objects is formalized as
follows:

Law of Finite Creation: For each event E, created(E) is a finite set.

2.4.6 Laws of Locality

Our intuition tells us that causality in the ph ysical world is local , that there is no
“actio n at a distan ce ”. The actor model conforms to this intuition in the sense that all
causality is mediated through messages. In other words, information in an actor
computat ion is transmitted by, and onl y by, messages.

________ _____



Laws of Locality - 52 - Section 2.4.6

The most fundamen tal  form of knowledge which is conveyed by a message in an actor
computation is knowled ge about the existence of another actor. This is because an actor A
must “know a bout ” another acto r B. i.e. know B’s name , in order to send B a message.
However , an actor ca n know an actor ’s na me only if it was either created with that
k nowledge or acquired it as a result of receivin g a message. In addition , an actor may send
a message to another actor conveyin g only names the first actor alread y knows; i.e. it may
not make up a iiame out of th in air  and send it in a message as a genuine name.

The t est of this  section formalizes these intu itions as laws which legal actor
com pu t at io n s  must obey. In an earli er section , we introd uced the notion of an actor ’s
acquaintances and stipulated that  at no time could an actor remember the names of more
than  a f i n i t e  number of other actors , i.e. its acquaintance vector was finite. We now want  to
he more pi ecise a bout how an actor ’s vector of acquaintances may evolve over the course of
its local time.

An actor is given a finite ini t ia l  vector of acquainta nces when it is created .9 We
require that  every element of this initia l  vector be a partici pant of the actor ’s creation event ,
since i i i t u i t i v e l y an actor ca n init ial ly know about only its parents , acquaintances of its
parents , and its sibli ngs. Therefore , we have the following law:

Law of I n i t i a l  Acquaintan ces:  If an actor z is the target of an event E and E is the first
event in the recei pt ordering for z, the n

acq s~ (z) c part ici pa iits(creat io n(z)) u created(crea tion(z)).
The ac quaintance vector of an actor may change as a result of the messages it receives.

Whe n it  receives a message, it may add to (or replace one of the elements of) its
ac quain ta nce  vector any actor ’s name mentioned in the message. It is also allowed to forget
acquainta nces at any time. An actor can also remain pure by refusing to change its

9. Some actors are primordial; i.e. they exist at the beginnin g of’ the computation. If for
uniformit y ’s sake the y need a creation event , the initial event which started the computationwil l serve. 

~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ - - - - --~~~~~~~~~~~
-- -- .

Laws of Locality - 53 - Section 2.4.6

acquaintance vector. Most actors remember very little of what they have been told. For
examp le, a cell has exactly one acquaintance, its contents , which it can be asked to divulge
or replace on command.

The following law encodes the int ~uit ion that the most an actor may learn from an
event are the names mentioned in the message and the new actors created in the event.

Law of Precursor Acqua intances: If an actor z is the target of an event E and E has a
precursor in the arrival ordering of’ z, the n

acq SE(z) ç partic i paiits(precur sor(E)) u created(precu rsor(E)).
As we have noted ab ove, an actor is restricted in what other actors it can send

messa ges to. In particular , an event E may activate an event E’ only if the target of E’ is a
part icipant of E or created in E and each actor mentioned in the message of E’ must also be
a participant of E or created An E.1° This gives rise to the following law:

Law ~~ Activator Acquaintances: For each non-initial event E,

target (E) c par t ici pants(act ivator(E)) u created(activator(E))
and

message(E) c part ici pant s(activator(E)) u created(act ivator(E)).
These locality laws rule out “broadcasting” protocols in which messages are sent to

every actor in the system.11 This is because the phrase “every actor” is not well-defined in a
model which allows the creatio n of new actors , but has no global states in order to pin down
precisel y which actors are in existence at any given “ti me”. Broadcasting protocols are not
inconsistent with the other axioms of actor theory , but making their semantics precise would

10. Recall that the participants of an event include the acquaintances of the target and the
messa ge.

II. However , a message distribution center can be built so that a single message can be sent
to ever y actor registered with the center.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - .-.—
~~~~~~~~~~~~~

-- -.—
~~~~~~~~~~~

. —---~~~~~~~~~~~~



--—-~~~~~ 
—---- 

~~~~~~~ --~~~ 
-

Laws of Locality - 54 - Section 2.4.6

add a source of indeterminacy in addition to that introduced by the arbitration which
makes the receipt ordering total for every actor.

2.4.7 Actor Induction

Usin g the different ordering relations on an actor computation --the activation
ordering, the recei pt orderings for every actor , and the combined precedes ordering--one can
prove properties about the computation throu gh actor induction. Actor induction , a form of
st ructural induction on the structure of the actor computation , consists of two parts.
Si.~ppose that one is tryin g to prove property P of every event in an actor computation.
One must first prove that P is true of the initial event E0. Then if one can prove that P is
true of E , assuming that P is true of every immediate predecessor of an arbitrary event E in
the given ordering, then we may conclude that P is true of every event in the actor
computation.

For ex am ple, suppose that one wanted to prove an invariance property P about a
certain actor A in an actor computation. One need only prove that P Is true of A
“immediatel y after ”2 A’s creatio n event , crea t io n(A), and that if for every event E in which
A receives a message, P is true of A immediately after precursor(E) implies that P is true
immediatel y after E, then P is true of A immediately after every event in which A receives a
message. Since events in which A receives a message are the only ones which can affect A,
P is true of A for the whole computation.

This example makes use of an important special case of the following principle:

of Precursor Order Induction: If property P is true of the initial event in an actor
computation , and if for all E~E0, P(precursor(E)) implies P(E), then P is true of every event
in the computation.

12. If a property is true “immediately after ” an event E, then it is true for every immediate
successor of E in the combined ordering.

- ~~~~~~~~~~~~~ - ~~

Actor Induction - 55 - Section 2.4.7

Recall that the precursor of an event E is the previous event in which target(E)

received a message, or the creation event for target(E), if E is the first event in which
target (E) receives a message. Hence the receipt ordering for every actor is a sub-ordering

of the precursor ordering. Thus , in our example using the receipt ordering for A above, we

let P be tr ivial l y true for all events in which A is not the target , and the other events (with

the exception of creation(A)) form precisely A’s receipt ordering.

Precursor order induction is usefu l for doing “data type inductions ” to prove that

certain properties of data objects are preserved. Properties of control structures and

properties of computations which do not Involve side-effects are proven using activation
order induction.

Law ~~ Activation Order Induction: If property P is true of the initial event in an actor

computation , and if for all E~E0, P(activator(E)) implies P(E), then P is true of every event

in the computation.

For example , every property of a serial computa tion--one in which the precedes

ordering is linear--can be proven using only activation order induction.

Comp lex properties or properties like synchronization which involve both the

activation and receipt orderings require full actor induction over the combined precedes
orderi ng.

of Combined Order Induction: If property P is true of the initial event E0 in an actor
com putation , a nd if for all E~E0, P(activator(E)) and P(precursor(E)) together imply P(E),

then P is t rue of every event in the computation.

2.4.8 Cells

The behavior of cells can be axiomatized by positing a primitive actor create -cell ,
which generates new cells upon request. These generated cells are new in the sense that

they are not shared with any previously generated cell , i.e. a change to the newly generated
cell will have no effect on previousl y generated cells and vice versa.

Cells - 56 - Section 2.4.8

Crt’ation: An event of the form:

[create-cell ~~~~~ (initial-contents: i, reply-to: c]]

activates exactl y one event , which has the form:

E2: [c [reply: nil,
where n is the newl y crea ted cell. Furthermore , created(E 1)— {n}, and creation(n)—E 1, which
says that n is the onl y actor newly created in E1. Thus , each cell returned by create-cell
diffe rs from all previously created cells because those cells have different creation events.

Use: Cells recognize only messages of two types:

[contents? reply-to: ci and [store! y, reply-to: ci.
Intui t ivel y, a cell ha s exactl y one acquaintance , its contents , which may be queried or

updated by contents? and store! messages. We will use the notation contentsE(n) to denote
the acquaintance of the cell n for the event E in which n receives a message.

The behav ior of a cell can be completely characterized in terms of this contents
function , as follows.
contents E (n)

i f E i s the f i r s t even t in the receipt order i ng for n
then i , where

(create—cell ~~~~ (initial—contents: i , rep l y—to: ci]
is the creation event for n

else if precursor(E): (n <~~~ (store! x , rep l y—to: ci)
then x

e l se contentsprecursor(E) ~~~~
Contents: An event of the form:

En ~~~~~ [contents? reply-1o ci)
activates exactl y one event , which has the form:

E2: Ec (reply: contents E (n))],

and created(E1)=created(E2)~ø.

I

IIlI.. — --—..-
~~~~

---- .—-— - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ---~~~~----.- - —.  ~~~~ ~~~~4



Cells - 57 - Section 2.4.8

Up date:  An event of the form:

[n 
~~~~~ [store! y, reply-to: ci]

activates exactl y one event , which has the form:

E2: [c ~~~~~ [repl y: done.]],

a nd creat ed(E1)=created(E2)= .

2.4.9 Busy Waiting and Fairness

Busy waiting is a synchronization method used in some multiprocessing systems where

• eithe r the onl y communication between processors takes place through shared memory, or a

processor cannot depend on the others to “wake it up ” when the others are ready to signal
it.

Consider the example in Figure I below in which a processor A must wait for a

processor B to reach a certain point before processor A can proceed. A shared memory cell
S is i nitialized to a value known to both processors. Then processor A goes into a tig ht
loop, cont inually checkin g the contents of S for a change. When processor B is ready to
signal A , it stores a new value into the shared cell S. Processor A will notice that the value
of S has changed and will proceed out of its loop.

Busy waiting requires that the memory shared between the two processors be
arbitrated so that the one processor does not try to read the contents of’ the cell during the
same cycle in which the other is changing those contents. (Otherwise, the read might
produce garbage.) The axioms of actor theory imply the existence of such an arbiter.
However , an arbiter can be unfai r in the sense that it always gives priority to one processor
or the other , a nd in the worst case, may lock out , or starve , one processor completely. Much
effort has gone into the problem of specifications for the fairness of the arbiter which
schedules the requests processed by the memory, and elaborate algorithms for fair
synchronization have been developed.

Busy Waiting and Fairness - 58 - • Section 2.4.9

Fig. 3. Busy Waitin g on a Cell
c e l l S i n i t(ø) , % S is i n i t i a l i zed to zero. %

Code for Processor A.

loop: i f contents (S).Ø
then goto loop
e lse . . .proceed...

Code for Processor B. S

Ca lcu la tes somethin g wh ich A needs

S :~ 1: 5 T e l l A that we ’re done. S
‘4 Assume B is the only processor w r i t i ng into cel l S. S

The actor model requires no such notion of scheduling or fairness to prove that
lockout or starvat i on is im possible , at least at the level of’ elementary message receipts.
Wh y? B y defini t ion , a completed actor computation has no undelivered (i.e. unreceived)
messa ges outstanding. Thus , every message “event ually ”’3 gets throug h (“neither rain nor
sleet...”). That a message gets through within a finite number of steps follows from the “no
infinite descending chains ” property of the receipt order for every actor. Therefore , between
any two messages which are received by a cell , at most a finite number of’ others can be
received. In our example above , between a “contents?” message from processor A and the
“store! I ” messa ge from processor B, only a finite number of other messages will be received,
a nd hence the cell ’s contents will eventuall y change. Furthermore , betw een the receipt of the
“store! I ” messa ge from B and the next “contents?” message from A, only a finite number of
messa ges can be received and hence A will eventually detect the change in the cell’s
contents. However , the “length of time” (i.e. the number of receipts processed by the cell)
required to synchronize us ing this simple method is not bounded by any computable
function (using only these basic axioms of actor theory). So, although busy waiting is
guaranteed to work , it may not be a satisfactory synchronization method.

13. Perhaps only a fter an unbounded amount of time.

- -._ -., r__ — --~-r

Busy Waiting and Fairness - 59 - Section 2.4.9

We have just shown how the underlying message transmission mechanism of actor
theory satisfies the weakest reasonable form of fairness: every message sent is eventually
received by the target after it has received at most a finite (but a priori unbounded) number
of othe r messages. However , this weak fairness of the actor transmission may not be shared
by higher level protocols built using this simple mechanism. Thus, for more complex
objects such as monito rs [54) or serializers [51], fairness properties must still be proven.

2.4.10 Discreteness -- A Counterexa inpie

One question that comes up in relation to the Actor theory axioms we have presented
is whether or not they ~e independent , i.e. whether any axiom can be proved using the
other axioms. In particular , the question arises as to whether the discreteness of the
precedes relation is a consequence of the discreteness of the activation and precursor
orderings.

The answer to this question is no, because there exist two finitary directed rooted trees

over the same infinite set of nodes, such that the closure of their union is a strict partial
order , yet the pa rtial order is not discrete.

A diagram for th is counter examp le appears in Figure 4. Figure a) shows the first
fi n i ta ry tree over the nodes, figure b) shows the second finitar y tree, while figure c) shows
their union. (Only a skeletal set of arcs actually appears; the rest are implied by
transi t ivi ty .) The root node for both trees is called E0, and each tree spans all the nodes.
Notice th at there are no cycles in c), yet there are an infinite number of nodes in the partial
order between and E. Hence c) is not discrete, even though both a) and b) are.

If we were to interpret c) as an actor computation , we could choose a) as the activation
order ing and b) as the precursor ordering. However if we examine carefully the structure
of c), we notice that there is something strange going on. E’s activator event is which
must be preceded by E2 in the precursor ordering. Now E2 cannot be the creation event
for t ar get(E 1) since the creation event for the target of an event must precede or be the
activator for the event. Therefore E0 must be the creation event for the target of E1.

- -

~

- - -~~~~
_ _~z• • -~_ _ . _ • • •_ . ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~---- — - - - - - - -. —- . -~~~• - - ~~ .—- . -- . ~~~~~~~~~~~~~~~ - - - - ~~~~~~~~~~~~~~~~~~~~~~ . -~

-
• Discreteness -- A Counterexample - 60 - Section 2.4.10

Likewise, creatioii(target(E3)) must also be Eo. Continuing in this manner , we see that the

creation events for all the E .’s must be E . But this contradicts the axiom that E can0 0
create only a finite number of different actors. Therefore, the locality and finite creation

restrictions (to be defined below) rule out this diagra m as a legitimate actor computation.
(Notice that c) is almost symmetrica l, so that interchanging the interpretation of a) and b)
does not help.)

Discreteness -- A Counterexample - 61 - Section 2.4.10

Fig. 4. Counter-example to the Discreteness of the Combined Order

~IItllhr_~ - -~~- - —-- .-—-~~ .--—~— -—- .—-~~~ • - •

Discreteness -- A Counterexample - 62 -
-

SectIon 2.4.10

This counterex amp le shows that the discreteness of the combined order does not

necessaril y follow fr om the discreteness of the activation and receipt orderings. The

significance of this is that if the discreteness of the precedes relation follows from the other

axioms , it must depend on more than the discreteness, rootedness, and finitariness of the two

constituent relations , and the irref lexivity of the precedes relation.

It also provides evidence ’4 for the conjecture that no Independent , local scheduling

algorithm can ensure the fairness of’ the overall actor system. In other words, a computation
produced by an actor system with only local scheduling runs the risk of being either unfair

or indiscrete. ’5

2.5 Constructive Models for Actor Theory

2.5.1 Caveat

The following description of actors, messages, events, and schedules will be quite

unacceptable to the mathematician who is used to rigorously defining sets, then relations on

sets, function on those sets, etc., because all of our sets are recursively defined in terms of

one another. We violate the standard set theoretic axioms by not starting with a few sets

like
~~~ , 

c~, and a few operations on sets like x, ~ to produce the domains for our relations

and functions. Therefore , we ca nnot say a priori what these containing domains are, and -

cannot use the axiom of comprehension to restrict these domains to be exactly what we

want.  As a result , our models turn out to be based on prope r classes rather than sets. Scott
(78,79] has conside red the~ problem of such recursively defined domains, and his work is

considered to put such things on a proper foundation.

14. Will  Clinger (23) and Valdis Berzin s (14) have recently discovered that the discreteness
of the combined ordering is independent of all the other actor axioms.
IS. Althoug h a rbiters form a scheduling mechanism that is locally fair , an arbiter cannot

ensure that  messages which are delayed in transmission are given priority in being received
by the actor it arbitrates. (If it tried , it would have to wait arbitrarily long, since they have
no idea what messages are in transit to its actor.) Therefore, this mechanism cannot
guarantee that  every message will eventually be received.



Caveat - 63 - Section 2.5.1

Actor theory as a first order set theory is guaranteed to have a model if it is
consistent . ’6 However , the model guaranteed by this theorem is not very usefu l for
understandin g actors because it is produced from the purel y syntactic material of the

defini ng axioms. We would like to prod uci more constructive , intuitive models which give
more insight into the nature of actors , as well as proving that this theory is consistent.

Unfo rtunately, due to the extreme generality of the theory, with its mutuall y
rec ursivel y defined sets, we are pushed to the limit in our ability to put the constructive
models themselves on a sound mathematical basis. However , we do have another
recourse--a computational model using recursively defined data-types such as LISP’s
S-expressions. Even thoug h we may be hard pressed to give a proper mathematical
interpretation to such objects , they certainly exist and we may compute with them. Thus, if

a computational model for actors can be produced , it will prove the consistency of actor
theor y, assuming th at LISP (or whatever such language) is consistent.

2.5.2 Constructive Models

We conceive of two computational models of actor theory, one takin g cells as primitive
concepts , the other using only constructions which do not involve side-effects. While the cell
model is si mpler and quite intuitive for anyone who has programmed a computer , it does
nothin g to explain what  a cell is, since it takes the cell as primitive.

We will first present the cell model , and then the pure model.

2.5.3 The Cell Model for Actor s

An actor in the cell model consists of a triple <name ,scr ipt ,acquaintances> , where na~ne
is an identifier which uni quely determines the actor , script is a constant progra m text In
some language , and acqua intances is a constant vectQr of stora ge cells, each of which holds a

16. This does not imply its completeness , as there may be several models which disagree
with each other on unimportant details.



- 
!_r_ !. — 

~~~~~~~~~~~~~~~ —--.~~~ 
-—. —-- -,,—,--- -

The Cell Model for Actors - 64 - Section 2.5.3

path name (roughl y a pointer) to another actor.
Names for actors serve to distinguish each actor in a computation from every other

actor. A conven ient way to accomplish this is if the name of an actor is a pair
<creation ,index> , where creation is the creation event for the actor, or the distinguished
indicator NIL if it is an initial actor , and index is a finite non-negative Integer which
distinguishes this actor from its siblings (other actors claiming the same creation event). In
additio n to dist inguishing, actor names also identify, in the sense that an actor’s name
determines the actor , hence its script and its vector of acquaintance cells. (However , the
actual acquaintances themselves can onl y be determined relative to a given event in the
actor’s recei pt ordering, since they can change from one event to another.)

Scripts for actors are finite programs in some programming language which are
executed upon the receipt of a message by the actor. Upon invocation , the script may create
a finite number of new actors and messages and send them off to other actors. It may also
modif y some of the cells in the local acquaintance vector to forget their current contents or
remember some new contents. It may reference various components of the message.
However , it may not loop and it may not parameterize a reference to the message or one of
its acquaintances; i.e. it may refer to acquaintance 3 but not acquaintance i. Therefore, since
the scr ipt is constant and finite , it can refer to onl y a bounded number of storage cells in the
acquaintance vector and hence our restriction on acquaintance vectors to have fixed, finite
lengths is no hardship .

The acquaintance vector plays a role in actor theory similar to that of the local
binding frame in current higher level language semantics. The cells of an actor’s
acquaintance vector are init ialized to hold the Initi al acquaintances of the actor when the
actor is created. These cells may be updated as a side-effect of an event hav ing the actor as
it s target , but are completely private to the actor and inaccessible to scrutiny or change by
a ny other actor. In other words, the acquaintance cells are not actors themselves; they have
no names and can receive no messages. When they are updated as a side-effect of an event ,
thei r updatin g is indivisibl y tied up with the event; before the next receipt of a message by
the actor , the new acquaintances are well ensconced In these storage cells.

The Cell Model for Actors - 65 - Section 2.5.3

An initial configu ration for an actor computation is a finite set of initial actors, i.e.
actors whic h are primordial since they lack a proper creation event , and a single pending
event in which an i nitial message is sent to one of the initial actors. An actor computation
C.< f ,”--> ’,E0> deriv ed from an initial configuration is a set of events ~~ , strictly partially
ordered by the relation “-->“

, with a distinguished element E0, which is the least element of

~ with respect to the ordering “--> “
. Each non-least element E is a quadruple <T,M ,A,P>,

where T is the target actor which receives the message M in the event E, whe re A is the
activator event whi ch sent M to T, a nd where P is the precursor event , i.e. the previous
event in Vs receipt ordering (or T’s creati on event , if E is the first event in which T
receives a message). Finally, E0 is the event in which the initial message of the initia l
confi guration is received b y its intended target actor; i.e. EO~<Tin it ial, M ini t ia l , N IL ,N IL> .

The partici pants of the init ial event E0 include th e actor ~~~~~~~~~~~~~~~ which
has no creatio n event because there are no events before E0, yet this actor must exist before
it receives a message. However , there may be other initial actors (the other participants of’
E0). and ca n be convenientl y assigned as their creation event without contradicting our
a xioms. This convention has the advantage that no additional law is required to specif y
that the number of init ial actors is finite , since we already have a law requiring that only a
I iriit e number of actors may be created in one event. If more than one initial actor were
allowed , a separate axiom to this effect would be required.

Althou gh we have described actor computations as statk , al read y completed objects.

• the y can be anal yzed as havin g been built recursivel y, starting with E0 from the simple
in it ia l confi guration. E0 creates some n ew actors, sends messages and activates new events,

which in turn send messages and activate other events , and so on. A complete actor
computation is the limit of this process; it is the final structure which is achieved a fter all

events have occurr ed and all messages have been received.

This is entirely analogous to the construction of the natural numbers from the empty
set. In this construction , we have an initial configuration --the empty set--and a process for
takin g one configuration to a new one--adding the successor of an element already

obtained--and define the natural numbers as the limit of this process.

-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -
-
~~~~~~~~~~ -- - —  -~~~~•



The Cell Model for Actors - 66 - Section 2.5.3

However , unlike the situati on with the natural numbers, wherein the process for
convertin g a configuration into its successor was uniquel y determined , the process for
convertin g an actor configuration into its successor is not single valued , and the various
possibilities may even be inconsistent (unable to coexist in the same computation). This
means tha t  there need be no single , unique actor computation derived from an initial
confi gurat ion.  This non-determ inism is due entirel y to the arbitration required to
determine a recei pt ordering for all actors. For example , if two unordered messages arrive
at a n actor , the order in which they are processed is not determined , yet this order can
d rasticall y affect the outcome. For examp le, if the messages were requests to an airline
system for a reserv at ion on the last seat on a flight , the order of receipt would determine
who was assi gned the seat and hence who would be affected if the pla ne crashed .
Therefore , we must either talk about the set of possible computations derived from an
ini t ia l  configuration , or else talk of the computation as proceeding non-deterministically.
We will i nit iall y take the second approach.

2.5.3.1 Pa r tial Computa tions

In order to see that  an actor computation is isomorphic to the limit of a process which
starts fr om an ini t ia l  confi guration and continuall y adds new events , we must consider what
the intermediate states , which we call partial computations , look like.

In a part ial  computation , there a re some messages which have been sent but not yet
received , i.e. some events h ave been activated, but have not yet occurred . These messages in
transit , these pendin g events , must be expl icitl y represented in the partial computations.
There are several alternatives available in choosing a representation for these pending
events , such as sets , queues , etc., but we will ignore this problem for a moment.

A pa r t ia l  computation is a triple <~ ,--> ,P> , where £ is the set of events which have
alrea d y occurred , “-->“ is the precedence relation built up so far among those events , and P
is the “pending event ” str ucture which represents the activated events that have not yet
occurred. The ini t ia l  configuration is then <(},{),P0

., where P0 represents the sing le

____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Partial  Computations - 67 - Section 2.5.3.1

pend ing event wherein the initial actor is sent an initial message.
The process whi ch takes a partial computation to a larger computation we call the

interpreter. Intu itivel y, the interpreter removes a pendin g event from the pending event
• structure and causes it to occur , i.e. it adds to to the event set and adds the appropriate

edges to the precedes relation. In so doing, it adds to the pending event structure all the
new events that the occurr in g event activates. If the pending event structure becomes
empty , i.e. if there are no pending even~s, then the computation is complete and the
i nterpreter reaches a fixed point.

In many cases, however , the computation will be infinite and the pending event
structure will never become empty in any finite amount of time. We would like to consider
all (finite or infini te ) fi xed points of the interpreter for an actor system accessible f rom the
ini t i a l  confi guration of the system to be the actor computations which are derived from that
inttia ~ configurat ion. Since in general the individual steps of’ the interpreter are
non-deterministi c , the re will be many of these different fixed points.

Serious questions arise about the fairness with which the interpreter selects events
• fr om the pending event structur e. If the interpreter picks an element from the pending set

randoml y and independently at every stage, th en the probability that a pending event will
‘er occur a pproaches zero. In other words, in the space of all possible interpreter choice

sequences , the set of unfair  sequences has measure zero. However , the set of unfair
sequences is not necessarily empty ! Therefore , this “random ” interpreter cannot be a model
for actor computat ions because it satisfies our actor axioms only p robabilistically; i.e. it
admits of unsa tisfactory computat ions , although they have onl y measure zero in the whole
set of generated computations.

Suppose now that  we choose a strict first-in , first-out (FIFO) queue for our pending

• event str ucture. Then an event , once activ ated, will never have to wait more than a finite
• number of steps to occur , since the length of the queue is always finite , and the pending

event cannot lose its p lace in the queue (i.e. be pre-empted). This model satisfies the axioms
of acto r theory, in pa rticular the discreteness axiom for the precedes relation , and therefore
is a logical model of the theory.

--



Partial  Computations - 68 - Section 2.5.3.1

Ward and Halstead (96) propose the FIFO model for the pending event structure of a
rest ricted actor theor y in which the precursor ordering is always implied by the activation
ordering. This restricted actor theory requires no arbiters since there is no freedom in the
order of receipt of messages.17 Since the FIFO model is non-pre -emptive, an event , once
scheduled , will occur within a finite number of interpreter steps. Thus, the li mit of this
process will  produce the (essentiall y unique ) completed actor computation which follows
from the given init ial  configuration. Figure 5 shows a FIFO event scheduling algorithm.

However , a strict FIFO queue rules out other modes of behavior , other scheduling
st rategies , which are also acceptable models of actor theory. For example , using the FIFO
model makes the interpreter and hence every computation strictl y deterministic , since there

Fig. 5. FIFO Actor Interpreter
t 0; % Keeps track of la st scheduled event. %
S(ø) : =  E0; % I n i t i a l  event is onl y one initially schedu l ed. %
for i~ 8 to co % The clock ticks forever. %
do begin

let T=tarcjet (S (i)), I1=message (S (i)), A—activator (S(i));
% Find precursor for this event by scanning back. %
for j= i— 1 by —1 until target(C (jfl.T or C(j)~ creation (T)
do nothing;
let P=C(j): % This is the precursor event for the current event. %
let E=<T ,t1,A ,P>;
% Update Partial Order with th ir new event. % -

• PU : = P0 U IA-->E , P-->E};
% Compute new events to schedule, %
let event I ist=match (ll ,T,P);
% Schedule these new events. %
for ecevent li st
do begin

t := t+1 ; % Compute next open slot. %
% Schedule it there with E as the activator . %
S(t) ;=  <target (e),message(e),E>;
end

C(i ) :=  E % Event E is complete. S
end;

17. They make the additional assumption th at if an event dispatches two messages, they
are a ppended to the FIFO queue in the order given by the script of the event ’s target.

—~~~.— - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Pa rtial Computations - 69 - Section 2.5.3.1

is never any  ambiguity about the order in which pending events are processed . Since actor
theory requires onl y that all messages arrive in a finite amount of time, but prescribes no
other conditions on the order of arrival of those messages (except when the receipt of one
message pr ecedes the sending of another), there may be computations derived from an
ini t i a l  confi guration which are not isomorphic to that generated by the FIFO model, yet
these computations still satisf y the axioms of the theory. Therefore , we would like a mode)
for actor theor y which is more general , I.e. which produces more computations than the
F IFO model , without producing any unfair computations.

The schedul ing model for actor theory presented below has the appropriate
characteristics.

Our schedulin g model’8 represents the pending event structure by an instantaneous
schedule , which posts the scheduled time of execution for every pending event. At the time
an event is act ivated , a ti me slot is non-dete rministicall y chosen so as not to conflict with
any  previousl y scheduled events. This non-deterministic strateg y purposely leaves gaps in
which events ma y he scheduled which are activated later. It also retains the property that
once a pending event has been scheduled , it may not be pre-empted or re-scheduled .
Therefore , at the time it is acti vated , a pending event is given a bound on the amount of
time it must wait  before it is executed. Hence, a pending event is guaranteed not to wait
forever for execution , and th us this scheduling strateg y is free of individual starvation
(f air).

An instantaneous schedule consists of a non-negative integer i , and a pair of partial
functions C., S ., whose domains are subsets of the non-negative integers. The integer i
denotes the curr ent event number , a crude clock which indicates how many cycles the
interpreter has been through since it started with the initial configuration. The first partial
functio n C1 has the set of’ events £ as its range, and for every interger 0�j.ci, C1(j ) is the

event which occurred at time j, if any. The second partial function S1 has th e set of

18. Some of the ideas for this scheduling model were formed during conversations with
Eliot Moss. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Pa rtial Computations - 70 - Section 2.5.3.1

pendi ng events as its range , namely triples of the form <T,M ,A> , where T is the target of
the message M which was sent as a result of the activatin g event A, and S.(j) denotes the
pending event which is scheduled for time j , if any.

Now since the intended inte rpretation of the instantaneous schedule ‘ci ,C1.S1> is that
the events in the range of C1 have already occurred , while those in the range of 5, are on ly
scheduled , we need a formal consistency requirement on instantaneous schedules which
ensures that this is the only interpretation. This consistency requirement states that an
event occurs at t ime j if and only if it was scheduled to occur at time j. More precisely, for
al l ,j such tha t O�j <i , eithe r S .(j) a nd C.~j) are both undefi ned, or they are both defined and
the y refer to the same event , i.e. ta rget (S~j))=ta rget(C .(j)). inessage(S~j))_Inessage(C .~j)).
a nd act i vator (S (j))=act ivator(C .(j)).

Our interpreter I takes as input an instantaneous schedule whose clock reads time i

• a nd non- cle termin ist ica ll y produces an instantaneous schedule for time i.1. Thus, the
computations which can be derived from an initial schedule S0 can be characterized by the

va rious limits 11’(S0) as n approaches infinit y.
An i nterpreter step consists of one of the following two cases. Let .ci ,C~

,S1> be the
input instantaneous schedule. If S(i) is undefi ned, then no event is scheduled for time t i ,

so return the instant aneous schedule .ci.l ,C.,S.>. In other words, the interpreter idles on this
step.

If S (i)=.c T,M ,A> , then for time t~i an event is scheduled in which the actor T receives
the messa ge M which was sent in the event A, i.e. A activated this event. To complete the
cu rr ent event , we need its precursor. The precursor can be found by searching the C-vector
from t=i-l back ward s to creation(T) until either an event P is found such that target(P)~T,
or creatj o,i(T) is ieached , in which case let P=creation(T). In either case, let the new event
E be ~T,M ,A ,P> .

Now the script for the actor T will tell how message M is to be interpreted using the
current ac quaintance vector of T, i.e. the script will indicate what new actors to create, what
new event s to activate , and how to update T’s acquaintance vector. The script creates these

~

- - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Part ial Computat ions - 7~ - Section 2.5.3.1

new actors , updates T’s acquaintanc es , and produces a finite list L of n pairs cT1,M~> which
specify the events which E should activate. The interpreter must now schedule these
pending events by choosing a sequence <t 1,t2,...,t~ > of distinct non-negative integers such
tha t t > i and S.(t .) is undefined , for all j , l�j�n , where n is the length of the list L. The
nuii~ber t . indicates the time at which the pending event L~ should occur , which may not be
earlier tha n the current event , and which may not conflict with a previousl y scheduled
event.

Once these events have been scheduled , this step of’ the interpreter is done, and it
ret urns the instantaneous schedule

n
.ci.l, C.u~ci,E,. S.u U {<t ., <T ., M ., E>>J

I I J J Jj =l
as its result. The interpretation of this interpreter step is that event E has occurred at time
i , and activated the n events which are scheduled at times t~, with targets T~. messages M~.
and activator E.

Figure 6 exhibit s such a scheduling model for actor computations which uses arrays of
cells for acquaintance vectors.

Our sched ul ing model is not the most efficient possible for generating the legal actor
computations from an initial configuration. In part icular , the pending event schedule could
probably be more efficient ly implemented with a priority queue [1.92], which would allow the

— interpreter to skip over empty slots when nothing is scheduled. However , our model is
simp le a nd precise, and so it serves our purpose here.

2.5.3.2 An Examp le of Constructive Interpr etation

We would like to illustrate the operation of the interpreter with a trivial example.
Consider an actor system with onl y two actors, A and B. In the initial event for the
computation of this system, actor A sends actor B two different messages, M and M’.
Because of the t otality of the receipt ordering for actor B, the messages must arrive either in
the order M , M’ or in the order M’, M.

_ _ _
- - • .—----- - -~~~~~~~~~~~~~~~~ _ _--— _ .~~~~~~~~~~

An Exam p le of Constructive Inter pretation - 72 - Section 2.5.3.2

Fig. 6. The Cell Model for Actor Computations
for i=ø to ~ % The clock ticks forever. S
do if S (i) is defined S Is there an event schedu l ed for time i? S

then begin
let T=target (S (i)), M=message(S (i)), A—activator (S(i));
S Find precursor for this event by ask i ng the target. S
let P=if most_recent_targe t_event (T) is defined

then most_recent_target_event (T)
else creatior,(T);

S Create the event node. S
let E~ <T ,F1,A ,P>;
S Update Partial Order with thi s new event. S
P0 := PU U IA-->E , P-->EI ;
S App l y script of target to message to produce new events and

update acquaintances of target. S
let event I ist=app l y (script (T) ,M,acquaintances (T));
S Schedule activated events. S
for e ~ event li st
do beg in

let j=i+guessU; S Guess a time in the future. S
while S(j) defined

do j:=j+1; S find first free slot thereafter. S
S Schedule e with E as activator . S
S(j) : =<target (e) , message(e) ,E>
end

C (i) :— E;
end ;

A trace of the scheduling model on this computation is given in Figures 7-10. The
interprete r starts the whole computation with only one event scheduled , the event in which
A receives a message M0 to initiate the rest of the computation. To execute this event , the
inter preter scans backward through the previously completed events (of which there are
none) to find the most recent event in which A received a message. There is none, since
this is the fir st event , so this event will have no precursor event. The first event E0 is then
created ha vin g A as the target . M0 as a message, NIL as the activator and NIL as the
precursor. This event is then entered into the partial order with no relationships to any
other events because there are no other events yet. The interpreter then matches M0 to A’s
script to determine what new actors to create and what new messages to send in order to
activate more events. Since A is to send two messages to B upon receipt of M0, the
interpreter schedules a time for the occurrence of these two future events, where B receives

~~~~~- - -- - .~~~~~~~~~~~~—-•-~~~~~~~~~~~~ - ,~~- - - .
~~ -• —-—•-• • _ -

~~~~~~~~


—~~
,

An Example of Constructive Interpretation - 73 - Section 2.5.3.2

M and B receives M’. Suppose for example that the pair .cB ,M> is scheduled first for time
t~6. This means that there are still empty slots in the schedule for times t — l ,2,3,4,5. When
the i nterpreter schedules the pair <B ,M’>, it can choose one of these empty slots or a slot
after t~6, but it cannot choose the slot at time t.6 because <B ,M> is already scheduled then.
Su ppose that the interpreter chooses the slot t—5 for the pair <B,M’>. Both new events are
scheduled by registering them in the “S~ vector. Finall y, the event E0 is registered in the
“C” vector , indicatin g that its execution is complete and the first cycle of the interpreter is
done.

The next four cycles of the interpreter (with t=I ,2,3,4) do nothin g because no events are
sched uled at those times. On the fifth cycle , the pai r <B,M’> is scheduled to occur and the
interpreter looks back throu gh the “C” vector for events with B as a target. It finds none,
and since B was not created in the course of a computation , there is no precursor for this
event , either. The event E1 is created havin g B as its target , M’ as its message, E0 as its
activator , and NIL as its precursor. This event E1 is entered into the partial order with the
sin g le relatio nship E0-->E1 beca u se E0 activated E1. Then the interpreter matches 3’s script
against the message M’ to decide what new events E1 should activate , and these events are
sched uled . E1 is registered as complete , and the fift h interpreter cycle is done.

On i nterpreter cycle t=6, B is scheduled to receive M. The interpreter scans backward
throu g h the completed event list “C” looking for events havin g B as a target. The first
such event it fi nds is E1, which it j ust comp leted . E1 becomes the precursor event for the
new event E2. which has B as its target , M as its message, and E0 as its activator. The
part ia l order is updated to contain the new event E2 and the new relationsh ip E0-->E2
(because E0 activated E2), and the relationship E1-->E2 (beca use E1 is the precursor of E2).
An y events activated by E2 are then sched u led, and the computation proceeds from there.

~~~~~~~~~•— - —~~~~~~~~~ 
_ _ _ _ _ _ _ _ _



Sets of Actor Computations - 74 - Section 2.5.4

Fig. 7. Constructive Example: t.0
S: 8 I <A ,MØ,NIL> I C: 0 I • I

i i  I i i  I
2 $  I 2 1

• t: 8 P0: emp ty

Fig. 8. Constructive Example: t=l
9: 8 $ <A , 118, N I L > I C: 8 I E0 cA ,f10,NIL ,NIL> I

ii  I 1 $  I
2 $  I 2 $  I
3 I  • I 3 1  I
4 1  I 4 1  I
5 I <B,F1’ ,E0> I S I I
6 I <B .I1,E 8> I 6 I I

t: 1 P0: E0

Fig. 9. Constructive Example: t~6
S: 8 <A ,118,N I L > I C: 0 I E9 - <A ,M0, NIL,NIL> I

1 I ———— I 1 I ———— I
2 1  ---- I 2 $  ----
3 1  I 3 $
4 I —---  I 4 I —- — — I
5 I <B,M’ ,E0> 5 I E1 cB,M’ ,E0,NIL> I
6 I <B,rl,E0> 6 I I
7 $  I 7 I  I

t : 6  P0: E0
+

+
+

V
E1

- - - - - --- ~~~—- -~~~~~ -~~~~ - ---~~~--- • - •-~~~~~~ • - ~~~~~~~-~~~~~~~~~~~~ --- -



- r-- ~~~~~~~~~ —.• 
—•

~
• •

~~
- . - --——-- -

~~ 
- -- - .---

~~~

. -

~

Sets of Actor Computations - 75 - Section 2.5.4

Fig. 10. Constructive Example: t— 7
S: 8 I <A ,M8,NIL> I C: 0 I E0 - .cA ,110,NIL,NIL> I

1 $ ———— I 1 1 $
2 $ ---- 2 $ I3 I - --- I 3 I I4 I —--— I 4 I IS I <B , tl’ ,E 0> I S I E1 — cB,fl’,E0,NIL> I
S I B,11,E8> I 6 I E2 - cB,t1,E8,E1> I
7 I ???? I 7 $ I

t: 7 P0: E8
++

+ +
+ +

V V
E1 ~~>B E2

2.5.4 Sets of Actor Computat ions

We i ni t ia l l y made the assumption that our interpreter I nondeterministically produced
a new instantaneous schedule from an old one. One can define a corresponding interpreter
I’ which operates on sets of instantaneous schedules.’9 For every instantaneous schedule S in
the in put set, I’ produces all possible schedules I(S) in the output set. Furthermore , for
ever y instantaneous schedule S’ in the output set, there exists a corresponding input
schedule S, such that S’ is one of the schedules derived in one step from S by I. Thus, I’ is
a single-valued function on the power set of finite instantaneous schedules.

The complete set of actor computations derived from the Initial schedule S0 may be
described as the li mit of I”({S0}) as n approaches infinity, i.e.

C - krni t I”({So}).

Thus , C is a set of instantaneous schedules which have become infinit e in all possible ways.

19. C. Plotkin (70) has investigated powerdomains, similar to power sets, which can be used
to make our recursively defined sets of schedules well-defined.

• •
-- _; -—

••

~~~~ 
—.—-

~ 
- 

~~~~~~~~~~~~~~~~ ~~ r 
~• -~~ =—---

~~
-—

Sets of Actor Computations - 76 - Section 2.5.4

We claim that I) every computation in C is a legitimate actor computation in the sense
that it satisfies all of the acto r laws; and 2) there are no legitimate actor computations
derived from S0 that are not in C. Hence, we claim that our interpreter is a model for actor
theo ry.

An analo gy to various subsets of the real number s might help in understanding this
limiting process. Suppose, for example , that we had a process which produced a string of
digits in the range 0-9. Suppose further that this process operated non-deterministically at
each step to choose the next digit to be output. If we interpret the digits output as
successive f ractional digits of a real number , then the limit of the process would be the set

• of all real numbers in the ran ge [0,13.20

Suppose now that we have an actor system which is simulating the “fair merge”
operator of clata flow systems. This operator accepts inputs from two different sources, and
produces an output stream consisting of the merged sequence of inputs. However , if this
merge operator is to be “fair ”, it may not decide after a certain time to ignore all inputs from
one of its sources and take inputs only from the other. if we code the decisions of the merge
operator as a finite string of 0’s and l’s, where a 0 means that the corresponding output
came from the left input source and a l means that the corresponding output came from the
ri ght input source, then the fai rness criterion means that the decision string may never
terminate with an infinite string of 0’s or l’s.

The set of computations derived from such an actor simulation of a fair merge
operator will be in a I-I correspondence with the set of infinite strings of 0’s and l’s. Again
interpret ing these strings as infinite fractions between 0.0 and 1.0, but this time coded in
binary, we hav e a correspondence between the set of computations and the set of
non-terminatin g binary fractions. Since the terminatin g fractions are only of measure zero
in the set of all real numbers , most arbitrary merge sequences are fair. However , the set of
actor computat ions of this simulation is carefully constructed to avoid the non-fair

20. This example requires only f inite branchin g at each point , whereas our constructive
— i nterpreter effectivel y branches countably infinitel y at every step.

~

— --—------- •--- • • — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—.-----

~
——

~ —--~~~— - -~- -~-.- -——.--— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sets of Actor Computations - 77 - Section 2.5.4

sequences.

Since the arbiter on the front of every actor is essentially a fair merge operator which
merges the unordered messages from a wide variety of sources into a single totally ordered

• sequence, the set of computat ions for almost every actor system must be constructed with
same subtlety as the set for the fair merge operator in order that they satisfy the discreteness
requirements of the precedes ordering.

2.5.4.1 Red uced Sets of Actor Computations

Once the set of all actor computations which can be derived from an initial
configuration has been constructed , the information about the pending event structures and
the instantaneous schedules can be thrown away. The pending event structure is not
needed because in the limit , there are no pending events. The instantaneous schedule is
also no longer needed because all it does is encode an existence proof that the precedes
order is capable of a monntonic embedding into the non-negative integers; the particular
embedding does not matter. Thus, the set of all actor computations is partitioned into

• equivalence classes of instanta neous computations that share the same partial orders. Hence,
this partitioned set is isomorphic to the set of completed computations (partial orders) which
follow from the initial configuration.

2.5.5 The Pur e Model for Actors

We would now like to give a “pure ” model for actors in which the acquaintances of an
actor do not have to be kept in storage cells which are updated as the computation
progresses. We do this to avoid the circulari ty of explicating cells in terms of acquaintance
vectors of cells. We eli minate these cells (at some cost in “efficiency ”) by re-computing on
each interpreter step what the current contents of the target ’s acquaintance vector should be.
This is done through a procedure which recurses backwards along the target ’s precursor
chai n and when it reaches the target ’s creation event , it gets the target’s initial acquaintance

• vector. The procedure then unwinds by going forward along the precursor chain,

The Pure Model for Actors - 78 - Section 2.5.5

re-executing enough of the target ’s script at every event in order to compute the new

acquaintance vector for the next event. Upon completion of this process, the target’s current

acquaintance vector is available so that the target’s script can receive the current message.

We ill ustrate this process by showing how it works in the case of a simple storage cell.

Recall that a storage cell has exactly one acquaintance- -its contents. It is created with some
init ial contents , a nd i~ responds to two types of messages--”contents?” and “store!”.
Conceptuall y. in the cell model for actors, when a storage cell receives a “contents?” message,

it simp ly looks in its acquaintance vector and delivers up what it finds there to the
conti nuat ion which was supp lied . Again , in th e cell model , when the cell receives a “store!”

message, it smashes the current contents with the new value which was supplied.

Figure II gives a script for such a cell which uses an array of cells as an acquaintance
vector.

Figure 12 shows a p ure (side-effect free) model for a cell. It uses a subsidiary function
“lookup ” which is not part of the cell’s script , but is a meta-function used by the interpreter.
(This is because a script cannot refer to events in the computation , only actors.)

Fig. 11. A Cell Model for a Cell
ce l l —i : (—> [message : M]

(cases Ii
(~~> [contents? rep ly-to: C]

act ivate cC , (acquaintance (0))>)
(—> (store! x r e p l y — t o : C)

acquaintance(0) : — x ;
act ivate cC, (done!]>)))

_ _ _ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

r
The Pure Model for Actors - 79 - Section 2.5.5

Fig. 12. A Pure Model for a Cell
Initial contents of cel l— 2 is NIL.

cell— 2: (=> (message: Ml
(cases M

(—> [store! x reply—t o: C]
act ivate <C, (done!)>)

(=> [contents? reply—to: C]
act ivate <C,contents(P)>)))

P is precursor of this event. %
contents(P) = if P— creation (cell—2)

then NIL
el se if message(P)=’ [store: x rep l y—to: C)

then x
else loolcup(precursor (P))

~~~~~~~ • — ~~~~~~~—

- - -  - 

~~~~~~~~~~~~~~~~~~~~~~~~


Storage Management and Garbage Collection - 80 - Section 3

3. Stora ge Management and Garba ge Collection

EXODUS 12
22 And y e shall , take a bun ch of h yssop, and dip it in the blood that is in the
bason , and strike the lint el and the two side posts with the blood that is in the
baso n: and unne of you shall go out at the door of his house until the morning.
23 For the LORD will pass through to smite the Egyptians ; and when he seeth
the blood upon the lintel , and on the two side posts, the LORD will pass over
the door , and will not suffer the destroyer to come in unto your houses to smite
yo u.

K ing Janies Version of the Bible

In this chapter , we consider a problem which arises in the implementation of actor
systems intended for real-time app lications. This problem is the management of
acquaintance vectors , n essa ges, a nd the like. Although many ad hoc schemes could be
cont rived , we ar gue tha t since these objects contain names (= pointers) to other objects, a
more elegant approach would use a garbage-collected heap. But classical garbage collected
hea ps have the problem that the allocation routine occasionall y calls the garbage collector ,
which takes an amount of time proportional to the size of the heap to finish. During this
hi atL ’s. the h ea p is unava ilable to the rest of the system.

The next chapter presents a new heap management algorithm which works
incrementall y, by performing a little of the work of garbage collection on every call t’~ the
stora ge allocati on routine. In this way, the huge variance in the amount of time required to
allocate a block of storage is reduced to zero. This algorithm aids in the programming of a
system with hard real-time constraints because the time required to allocate an object and
access its parts is completel y predictable.

Because our heap management algorithm is essentially a real-time simulation of a “li st
memory” (in the spirit of IPL-V [69] or a LISP machine [29,4l ,llj) on a “random access
memory”, we will often use the phrase “list memory” instead of “garbage-collected heap”.

_ _ _ ~~~ - -
-

~~~~~~~-~~~~



- - ~~~~~~~~~~ —~~~~~~~~~~ .-

Advanta ges of List Memory over Random Access Memory - 81 - Section 3.1

• 3.1 Advantages of List Memory over Random Access
M emory

The question arises as to wh y we go to so much effort to simulate a list memory on an
automaton with a ra ndom access memory. After all , with a random access memory, one ca n
access any memory cell in the address space in unit time, wherea s one must trace lists to
access most of the memory cells of a list memory.

The answer is that  we rarel y use the completely random access ability of the RAM.
The action s of a CPU in executing an instruction stream are highly predictable , since most
programs consist of lists of instructions with a few conditional and unconditional branches
thrown in; in other words, most programs are list structure themselves! The run time

• systems of higher level languages include stack structured or tree structured variable
binding environments which again do not make full use of the random access abilities of
the memor y.

In fact , the only two constructs that do make essential use of the random access
property of the memory are FORTRAN- style arrays of memory cellst and hash tables.
However , even in applications which use arrays , we often see more structure than a simple
one-to-one mapping of indices to memory cells. If the arrays are multidimensional , many
systems store them as vectors of addresses to other vectors--i.e. multilevel structures. If the

• arra ys are sparse, the y are sometimes stored as doubly-linked list structures or in hash
tables , either to speed up processing or reduce storage, or both. Even arrays without such
sophisticated structure are usuall y processed in row or column order , and rarely are accesses
made to random arr ay elements. In fact , mos t arrays which are not scanned linearly are
being used to simulate list structure! Thus even array structures , for which random access
memory should be idea l, do not normally take advantage of random accessing.

I. The semantics of an array require that adjacent elements of an array occupy adjacent
stora ge locations so that a probe of a random element in the array takes approximately 0(l),
regardless of the size of the array.

‘ - -



Advanta ges of List Memory over Random Access Memory - 82 - Section 3.1

Hash tables , which sim ulate an associative memory by interpreting a key--suitably
t ransformed- -as an index to memory, make the most important use of the random accessing
abi l i t y of these memories. However , even this use is limited , since most hash table
al gorithms do a linear search of the bucket which is chosen by hashing. It is also difficult
to e% rend hash tables , beca use doing so requires copying and rehashing every element of the
table to a new , la rger table according to a new hashin g function. 2 This brings us to the
primary problem of random accessed memory--it is extremel y hard to reorganize and
re-allocate memory because much data must be ph ysically moved, and this movement is
expensive.

List memory, on the other hand , satisfi es a substitution pr opert y which has both a
st ronger and a weake r form. The stronger form of this property states that any single
i nstance of a list node or atom in a list structure can be replaced by another piece of list
structure or an atom, with only a minor, local change to the list memory. This substitution

requires only a constant amount of time if the instance to be substituted for is already

known and the change is to be permanent.3 These substitutions furthermore do not affect

the access paths to the nodes of the memory which have not been substituted for; hence

there is much less need for synchronization among multiple processes making structural

changes to a list memory than among multiple processes moving data around in a random

access memor y.

This substi tut ion property is related to the phrase structure property of higher level
languages such as Al gol or LISP , where a whole subexpression can also appear in most
conte xts in which a constant or variable can appear. This feature contrasted with early
F O R T R A N  experience which allowed full expressions in onl y a few contexts. The free
substi tution of an expression in contexts where constants or variables are allowed is also
ca lled re fr rential transp arency and is an artifact of the evaluation of expressions in those

2. This can be done incrementally, as the next chapter indicates.
3. A whole list can also be substituted for one of its own sublists , thus generating a

di rected loop in the structure of the list memory.

~~~~• - --____ ~j:::, • -- — - -  ~ -—-


Advantages of List Memory over Random Access Memory - 83 - Section 3.1

contexts onl y for the purpose of the value they produce, not the side-effects they cause. (To
the extent that languages allow side-effects of expressions, they violate the principle of

referential trans parency.) This substitution property also operates in context-f ree languages ,
wherein a non-terminal generates the same sublanguage, regardless of the surrounding

conte xt.

The substitution property works in all these systems because they are based on tree
and gyapl structures rather than on linear strings and vectors. A cree may sprout new

branches from any limb without disturbing the other branches, but inserting new elements
in the middle of a string or a vector will affect all accesses to the elements after the inserted

part. because they are now further from the beginning (or the end) of the string.

The weaker sense of the substitution property preserves the conceptual idea of subtree

rep lacement , but instead of making a permanent change in the list memory structure,

enoug h of the main tree is copied with the new subtree replacing the old subtree such that
the new tree “looks like ” the old one, except for the substituted subtree. The conceptual

sense of substitut ion is retained, because each subtree except for the one replaced can still be

accessed in the new tree via the same access path that it had in the old one. However,

because every node on the access path from the root of the new tree to the substituted
subt iee is a newl y created node , the cha nge is not local and the time to perform the
operation is not bounded. However, in most cases the depth of the tree will be onl y
O(log N), where N is the total number of nodes in the tree, so that this type of

reorganization is still much cheaper than re-organizing a random access memory, which

would require time 0(N).

A pleasant result of the use of the substitution property--either in its strong or weak

form--is that identical subtrees can be shared because list memory allows an arbitrary

directed graph structure. Thus, where the concatenation of strings which are represented
explicitl y requires that the strings be copied into a new area of storage, a list memory allows

the represen tation of a string as the fringe of a tree structure, where some of the subtrees

can be shared with representations of other strings. In such a representation, concatenation

does not require the copying of the constituents, but requires only the formation of a new

-• • - - - - •• -—-- - - -—~~~~~~ —
-
~~=~~~~— - -~~~~— ~ -~~~ —~~~~ - - ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~•

-
-~~~

_ ~~

Advanta ges of List Memory over Random Access Memory - 84 - Section 3.1

node which points to the two constituent substrings. In actual practise in symbolic

manipulation systems [40,76], such shared representations save a great deal of storage, and if

processing algorithms know of such sharing, they can sometimes save a great deal of time

by considering each shared substructure only once, when it is first encountered by the

algorithm , instead of every time it is encountered.

3.2 Allocation Problems of Rando m Access Storage

Computational comp lexity theorists hav e made great strides in the past ten years in
identif yin g and pro vin g t ertain tasks and problems “ha rd”. While what constitutes a “ha rd”
problem may vary somewhat depending upon your patience and bud get, nearly everyone
agrees tha t if the time or space required to compute the answer goes up at least
exponentiall y with the size of the input parameters , the n the problem is hard. Now there is
a class of l)i~oblems called NP-complete problems which have not yet been proved to require
exponential behavior on the standard deterministic serial computer, but for which all

exist in g al gorithms are exponential. One of the largest subclasses of the NP-complete class
consists of allocatio n and scheduling problems , which for our purposes refer to storage and
time allocation. In fact , almost all allocatio n and scheduling problems which involve
discrete sizes and times are “hard” problems [90.24).

A real-time system requires response delays to stimuli which are guaranteed to be

within sl)ecified tolerances. The resources required for such a response vary with the

current stimulus and the history of preceding stimuli. Two of the most important of those

resources are storage cells and processor cycles. Optimal scheduling of cit/ic r storage cells or
processor cycles alone is an NP-complete packing problem, and scheduling them both

together is a two-dimensional packing problem which is surely just as hard. Now if we also

r -~quire tha t allocated storage may not be moved between the time it is allocated and the
t i:~ie it is released , then we must also try to minimize stora ge f ra gmentation , wherein a
srgnificant amount of free storage becomes unusable because it is spread throughout the
address space in little pieces, none of which is large enough to be usable.

______ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .-~ • . •- - • • .

• -~~~~~~~~~~~~~~~~
- , ----

~~~~~~~~~
- -

~~~~~~~~

Allocation Problems of Random Access Storage - 85 - Section 3.2

Many designers ignore the fragmentation problem and live with nailed-down storage
b y givin g fixed allocation to all the tables that the system needs and planning very carefully
the sizes of the tables. However , this leads to systems which are not robust , which break
down when .faced with a situation slightly different from that envisioned b y the system
desi gners. These systems break down with a message indicating that some obscure table
has overflowed and in many cases the problem is uncorrectable because the table sizes
ca nnot be changed. However , even if the system designer wanted to design a fail-soft
system--i.e. one which would fail totally only when all resources were uniformly
exhausted--he would find it very hard to do so and still stay within the real-time
requirements of his application , because of the large amount of copying involved in the
reorganization of random access storage.

Enter the list memory and our real-time simulation of it on a random access memory.
Using this scheme, the system designer can solve his problems with a much more flexible
memory paradigm than the random access memory. He can design his system with a list
memory havin g a conceptuall y infinite number of cells, which are all interchangeable , and
hen ce on l y the total number required would matter , not the order in which they were used.
Furthermore , so long as the total number of accessible cells remains less than the maximum
a llowed b y the memory, he need not worry about the memory becoming fragmented
through combination s of allocations and deletions. If his cell requirements grew by a factor
of 10 or 10 million , he need not change one bit of his program , since there are no addresses
stored and hence no address space limitations .4 With current hardware (real) address spaces
growing by approximatel y one bit per year , he need not worry that his program will become
obsolete in onl y a few years.

4. A user program need never know that actual size of a list memory pointer , since the
program will neve r deal with one directl y, but only through commands which change the
state of a root . Therefore , the program is unaffected by a change in pointer size.

_ _ _ _ _ _ _ _ _

• - ~~~~~~ - ...— - - - — -•—--..--•.- --——.- - .-- ,—.-.— .,—, -,—— — -——--
~ . ..~~~ . •— ...—.~.—- ,—.-——- - .-—~

-,• -.-.--—-—— -—- —.—--——
~~

— --‘-..-
~~~

- —,—.--—., ——- --—- .— ~~—~~- ~~~~~~~~~~~~~~~~~~~~~~~~

Allocation Problems of Random Access Storage - 86 - Section 3.2

The list memory eliminates the problem of fragmentation and table growth , th us

reducing the allocation constraints under which real-time systems must operate. The
scheduling of time in these systems remains hard , since real-time systems continue to be at
the mercy of their stimuli , but at least we will have given them better control over their own
internal storage. -

Although we show how a serial computer can do list processing in real time, no
current state-of-the art computer is entirely serial. Most have hardware interrupt
capabilities and external hardware DMA (d irect memory access) I/O devices. DMA devices
cause trouble since they ignore the list structure that the system is imposing upon the
memory and require that their buffers be nailed down for the duration of the DMA
transfer. This lacuna can only be fixed by making the DMA device respect the list
structure of the memory.

A system using DMA devices is made most modular by using a separate processor as a
memory controller whi ch handles access requests from both the CPU and DMA devices and
hence preserves the appea rance of the memory as a list memory to all the world. Within
the next few years , there will be room on a silicon chip to implement both a controller and a
large number of memory cells to create a true “list memory chip”. Since non-standard
memory chips such as FIFO (first-in , first-out) chips are becoming available , why not truly
usefu l devices like list memory chips?

~

. ~~~~~~~~~~~~~~~~~~~~~~~ . -—.--



List Processing in Rea l Time - 87 - Section 4

4. List Proc essing in Real Time

In this chapter ,1 we present and anal yze carefull y our method for incremental garbage
collection. Alth ough presented here in the terminolog y of LISP , the algorithm works
perfectl y well for SIMULA class objects (27,15,2] and CLU cluster objects [6!). More to the
po int , the al gorithm is perfect for the small acquaintance arrays encountered in an actor
im plementation.

A real-time list processing system is one in which the time required by the elementary
list operations (e.g. CONS, CAR , CDR , RPLACA , RPLACD , EQ, and ATOM in LISP) is
bounded by a (small) constant. Classical implementations of list processing systems lack this
property because allocatin g a list cell from the heap may cause a garbage collection, which
process requ ires time proportional to the heap size to finish.

A real -time list processing system is presented which continuously reclaims garbage,
includin g directed cycles, while linearizin g and compacting the accessible cells into
conti guous locations to avoid fragmenting the free storage pool. The program is small and
requires no time-sharing interrupts , making it suitable for micro-code. Finall y, the system
requires the same average time , and not more than twice the space , of a classical
non-copying implementation , and those space requirements can be reduced to approximately
classi cal proportions by compact list representatIon .

Arra ys of different sizes, a program stack , and bash linking are simple extensions to
our system , and reference countin g is found to be inferior for many app lications.

1. This chapter is essentially the same as the paper “List Processing in Real Time on a
Serial Computer ” [5).



• Introducti on and Previous Work - - Section 4.1

4.1 Introduction and Previous Work

List processing systems such as LISP [64] have slowly gained populari ty over the years
in sp ite of some rather severe handicaps . First , they usually interpreted their programs
instead of compiling them , thus increasing their running time by several orders of
magnitude. Second , the storage structures used in such systems were inefficient in the use of
stora ge; for examp le, compiling a program sometimes halved the amount of storage it

occupied. Third , processing had to be halted periodicall y to reclaim storage by a long

process known as garbage collection , which laboriously traced and marked every accessible
cell so tha t  those inaccessib le cells cou ld be recycled . -

That such inefficiencies were tolerated for so long is a tribute to the elegance and
productivity gained b y programming in these languages. These languages freed the

programmer from a primary concern: stora ge management. The programmer had only to call
CONS (or its equivalent ) to obtain a pointer to a fresh storage block; even better , the

-programmer had only to relinquish all copies of the pointer and the storage block would
automaticall y be reclaimed by the tireless garbage collector. The programmer no longer
had to wor ry about prematurely fr eeing a block of storage which was still in use by another
part of the system.

The first problem was solved with the advent of good compilers (67,88] and new
languages such as SIMULA especially designed for efficient compilation (27,15,2]. The
second was also solved to some extent by those same compilers because the user programs
could be removed from the list storage area and freed from its inefficient constraints on
representation. 2 Other techni ques such as compact list representation (“CDR-codin()
(41,11,22] have been proposed which also offer partial solutions to this problem.

2. In many cases, a rarel y used program is compiled not to save time in its execution , but
to save garbage-collected storage space.



Introdu ction and Previous Work - 89 - Section 4.1

This chapter presents a solution to the third problem of classical list processing
techni ques and removes that roadblock to their more general use. Using the method given
here , a computer could have list processing primitives built in as machine instructions and
the programmer would still be assured that each instruction would finish in a reasonable
a mount of time. For example , the interru pt handler for a keyboard could store its
characters on the sa me ki nds of lists--and in the same storage area--as the lists of the main
program. Since there would be no long wait for a garbage collection , response time could be
guaranteed to be small. Even an operating system could use these primitives to manipulate
its bur geoning databases. Business database designers no longer need shy away from
pointer -based systems, for fear that their systems will be impacted by a week-long garbage
collection! As memory is becoming cheaper3, even microcomputers could be built having
these primitives , so that the prospect of controlling one’s kitch en stove with LISP is not so
fa r-fetched.

• A real-time list processing system has the property that the time required by each of
• the elementar y operations is bounded by a constant independent of the number of cells in

use. This property does not guarantee that the constant will be small enough for a
particula r app lication on a particular computer , and hence has been called
“pseudo-real-time” by some. However , since we are presenting the system independent of a
pa rticula r computer and application, it is the most that can be said. In all but the most
demandi ng applications , the proper choice of hardware can reduce the constants to
acceptable values. -

Except where explicitly stated , we will assume the classical Von Neumann serial
computer architecture with real memory in this chapter. This model consists of a memory,
i.e. a one-dimensional array of words, each of which is large enough to hold (at least) the
representation of a non-negative Integer which is an index into that array; and a centra l
processing unit , or CPU , which has a small fixed number of registers the size of a word.
The CPU can perform most operations on a word in a fixed, bounded amount of time.

3. Work is progressing on io6 bit chips.



• ~~—~-----~~~~ 
.• - - ___-w~.-,.----_•,_ -_-.-_ __ - -. _-.__-__

__ _ —-.-----— • . - -  —.- ----~~~~~~~-r

Introduction and Previous Work - 90 - Section 4.1

The onl y operations we require are load , store, add , subtract , test if zero, and perhaps some
bit-testin g. It is har d to find a computer today without these operations.

As samp le as these requirements are, they do exclude virtual memory computers. These
machines are inter estin g because they take advantage of the locality of reference effect , i.e.
the non-zero serial correlation of CPU accesses to memory, to reduce the amount of fast
memory in a system without greatly increasin g the average access time. However , the ti me
required to load a particular word from virtual memory into a CPU register is bounded
onl y by the time to access the slowest memory. Since we are more interested in tight upper
bou nds , rather than  avera ge performance , this class of machines is excluded.

Since the primary list processing langua ge in use today is LISP , and since most of the
literat ure uses the LISP paradigm when discussing these problems , we will continue this
t radition and center our discussion around it. Due to its small cells, which consist of 2
pointers apiece . LISP is also a kind of worst case for garbage collection overhead.

There are two fundamental kinds of data in LISP: list cells and atoms. List cells are
• ordered pairs consistin g of a car and a cdr , while atoms are indecomposable. ATOM(x) is a

• predicate which is true if and onl y if x is an atom (i.e. if and onl y if x is not a list cell);

• Ec~~x ,y) is a predica te which is true if and onl y if x and y are the same object ; CAR(x) and
• CDR(x ) return the car and cdr components of the list cell x , respectively; CONS(x ,y) returns

a new (not EQ to any other accessible list cell) list cell whose car Is initially x and whose cdr
is ini t ia l ly  y; RPLACA(x ,y) and RPLACD(x ,y) store y into the car and cdr of x , respectivel y.
We assume here that  these seven primitive s are the only ones which can access or change

• the representation of a list cell.
There have been several attempts to tackle the problem of real time list processihg.

Knu th  [57, p. 422) credits Minsk y as the first to consider the problem , and sketches a
mult ipro gramming solution in which the garbage collector shares time with the main list
processing program. Steele’s [80] was the first in a flurry of papers about multIprocessin g
garbage collection which included contributions by Dijkstra (31,32] and Lamport (58,59).
Muller (68) independently detailed the Minsky-Knuth-Steele method , and both he and

• Wadler (93] an al yzed the time and storage required to make it work.

• • • • • - •  ~~~~~~~~~~ - •  —• •



Introduction and Previous Work - 91 - Section 4.1

The Minsk y-K nuth-Ste ele-M uller-Wad ler (M KSM W) method for real-tim e garbage
collection has two processes running in parallel. The list processor process is (ailed the
murato r while the garbage collector is called the collector (these terms are due to Dij kstra
[31)). The mutator executes the user’s program while the collector performs garbage
collection , over and over again. The collector has three phases: mark , sweep . and relocate.
During the ma rk phase, all accessible storage is marked as such , and any inaccessible
stora ge is picked up durin g the sweep phase. The relocate phase relocates accessible cells in
such a wa y as to minimize the address space required . Since the mutator continues running
while the mark and relocate phases proceed , the free list must be long enough to keep the
mutator  fr om starvation. Dur ing the sweep phase, cells must be added to the free list faster

• t han  they can be taken off , on the ave rage, else the net gain in cells from that garbage
collection cycle would be negative.

Muller 168) and Wadler 193] have studied the behavior of this al gorithm under
equi l ibr ium conditions (when a cell is let go for every cell CONS’ed, and when the rates of

• cell use by the mutator , and of marking, sweeping, and re’ocating by the co’lector , are aU
consta nt). If we let m be the ratio of the rate of CONS’ing to that of marking, s be the ratio
of the rate of CONS’ing to that of sweeping, and r be the ratio of the rate of CONS’ing to
that  of relocating, then we can derive estimates of the size of storage needed to support an
accessible population of N cells under equilibri um conditions. 4 Using these assumptions , we
derive:

m+ (m+1) (r+1 )
Maximum liKSIlt4 Storage Required ~ N + size of collector stack

1.-s(r+1)

We note that r=0 if there is no relocation (i.e. it happens instantaneously), in which

case we have the simpler expression:

4. Of course s<1, or else the storage required is infinite.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,_44

—
~~~~~~~~~~~~~~~~ • — - 

~~~~~~~~~~~~~~~ 
—-—- -

~
,--- .

~

.

~
,III~~

Introduction and Previous Work - 92 - Section 4.1

1+2m
Max imum 11KS1114 Storage Required ~ N -—-- + s i ze of collector stack

1—s

The collector stack seems to require depth N to handle the worst case lists that can
arise, but each po cition on the stack need only hold one pointer. Since a LISP cell is two
pointers , the collector stack space requirement is .5N. Thus, we arrive at the inequality:

1. S+2m- . Sc
Max imum MKSIIL4 Storage Required � N

1—s

These estimates become bounds for non-equilibrium situations so long as the ratios of
the rate of CONS’ing to the rates of marking, sweeping, and relocating are constant. In
othe r words , we rel ativize the rates of marking, sweeping, and relocating with respect to a

cons-counter rather than a clock.

The Dijkstra-Lamport (DL) method [31,32,58,59) also has the mutator and collector
running in parallel , but the collector uses no stack. It marks by scanning all of storage for a
mark bi~ it can propa gate to the marked cell’s offspring. This simple method of garbage
collection was considered because their main concern was proving that the collector actually
collected only and all garbage. Due to its inefficiency, we will not consider the storage
requirements of this method .

Both the MKSMW and the DL methods have the drawback that they are parallel
al gorithms and as a result are incredibl y ha rd to anal yze and prove correct. By contrast ,
the method we present is serial , makin g analyses and proofs easy.

4.2 The Method

Our method is based on the Minsky garbage collection algorithm [66), used by
Fenichel and Yochelson in an earl y Multics LISP [34], elegantly refined by Cheney (20), and

applied by Arnbor g to SIMULA [2). This method divides the list space into two

• sePn is/ ’ac cs. Durin g the execution of the user program , all list cells are located In one of the
semispaces. When garbage collection is invoked , all accessible cells are traced , and instead

The Method - 93 - Section 4.2

of sim p l y being marked , they are moved to the other semispace. A fo rwardin g address is
left at the old locatio n , and whe never a n edge is traced which points to a cell containing a
fo rwar d ing address , the edge is updated to reflect the move. The end of tracing occurs
when al l accessible cells hav e been moved into the “to” semispace (tospace) and all edges
have been updated. Since the tospace now contains all accessible cells and the “fromTM

semispace (f r orns pace) contains only garbage , the collection is done and the computation can
proceed with CONS now allocating cells in the former fromspace.

This method is simp le and elegant because 1) it requires onl y one pass instead of three
to both collect a nd compact , and 2) it requires no collector stack. The stack is avoided
throu g h the use of two pointers , B and S. B points to the first free word (the bottom) of the
free a rea , which is always in the tospace. B is incremented by COPY, which transfers old
cells from the fromspace to the bottom of the free area , and by CONS, which allocates new
cells . S scans the cells in tospace which have been moved , and updates them by moving the
cells the y point to. S is initialized to point to the beginning of tospace at every flip of the
sernispaces and is incremented when the cell it points to has been updated. At all times,
then , the cells between S a nd B have been moved , but their cars and cdrs have not been
updated . Thus when S=B all accessible cells have been moved into tospace and their
outgoing pointers have been updated. This method of pointer updating is equivalent to

- using a queue instead of a stack for marking, and therefore traces a spanning tree of the
accessib le cells in br eadth-first order.

• Figure 13 shows a diagram of this algorithm in operation.
Besides solving the compaction problem for classical LISP , the

M in sky -Fen ichel-Yocheison-Cheney-Arnborg (M FYCA) method allows simple extensions to
handle non-unifor ml y sized arrays and CDR-coding because free storage is kept in one
lar ge block. Allocation is therefore trivial; to allocate a block of size n, one simp ly adds n to
the “free space pointer ”.

Copying garbage collectors have been dismissed by many as requirin g too much
storage for practical use (because the y ap pear to use twice as much as classical LISP), but
we shall see that perhaps this judgment was premature.

L ~~~~

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



AD—AflS 328 MASSACMJSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE—ETC F/S Sn
COMPUTATION . u 

NOOO1U 7~~~~.O~~ 2

I

END
ni_ MED

6— 78
0°C

p



rr 
- 

________ T~T~~~~~ _ . : ’ _________ •.—_ _______

The Method - 94 - Section 4.2

Fig. 13. The Cheney Algorithm

~ I I I
- 

REGISTER BANK 

I I 

1’ \ FREW1SPACE
I I

_ _ _ _  I I
\ I V I I— v __ I  I--v 

I I—> free area <— I

1’
S-> B->

TOSPACE

We present the MFYCA algorithm here as Figure 14 in pseudo-Algol-BCPL notation.
The notation “ci[~3]” means the contents of the word whose address is the value of a plus the
value of a~ i.e. the contents of a+f3. If it appears on the left hand side of “:— “

, those contents
are to be changed. Thus, p[iJ refers to the i-th component of the vector pointed to by p .
The function s ize (p ) returns the size of the array pointed to by p. The notation “a & 0” is
similar to the notation “a;~3” in that a and 0 are executed in order; however, “a & j ” returns
the value of c~ rather than the value of ~~ . Thus, “;“ and “Sc” are the duals of one another:
“a ;u ;...;ci returns the last value (that of a ) whereas “a &cx &...&u “ returns the f irst1 2  n Ii 1 2  n
value (that of cQ.

Our conventions are these: the user program has a bank of N R  registers
R[ 1] ,...,R[ N R) .  The user p rogram may not “squirrel away” p ointers outside of the b4nk R
during a call to CONS because such pointers would become obsolete if garbage collection
were to occur. (We will show la ter how to deal with a user program stack in such a way
that the real-time properties of our system are not violated.) Pointers either are atoms or
refer to cons cells in fromspace or tospace. A cons cell c is represented by a 2-vector of
pointers: car(c)~c(O), cdr( c) -c U] . FLIP , FROMSPACE and TOSPACE are implementation 

—~—- ----~~ - _ . __ ~_ _ _ _ _ __ _ .~~~~~._ _~ _ ___ __ _ _ _ ___ ~ l_



The Method - 95 - Section 4.2

dependent routines. FLIP interchanges the roles of fromspace and cospace by causing
CONS and COPY to allocate in the other semispace and the predicates FROMSPACE and
TOSPACE to exchange roles. FLIP also has the responsibility of determining when the
new tospace is too small to hold everything from the fromspace plus the newly CONS’ed

cells. Before flipping, it checks if s ize(f romspace ) is less than (l.m)(slze(tospace)-(T-B)], where

in is a constant parameter and T is the top of tospace. If FLIP finds that fromspace (the new
tospace) is too small, either it must extend the space, or the system may later stop with a
“memory overflow” indication.

In order to convert MFYCA into a real-time algorithm, we force the mark ratio m to
be constant by changing CONS so that it does k iterations of the garbage collection loop
before performing each allocation. But this means that both semispaces contain accessible
cells at almost all times. In order to simplify the algorithm and the proof, we trick the user
p rogram into believing that garbage collection ran and f inished at (lie time of the last f l ip ;  i.e.
we assert that , as before, the user program sees addresses only in tospace.

Some slight effort must be made to keep up this appearance. When the semispaces are
interchanged, all the user program registers must be updated immediately to point to
tOspace. This gives the collector a head start on the mutator. Since the only operations that
might violate our assertion are CAR and CDR, we make sure that CAR and CDR cause
forwarding addresses to be followed, and cells to be moved, when necessary. This ensures
that the mutator cannot pass the collector. It turns out that preserving our assertion is

much simpler than preserving the corresponding assertions of DL (31.32,58,59). In
pa rticular , RPLACA and RPLACD do not cause any trouble at all!

There is another problem caused by interleaving garbage collection with normal list
processing: the new cells that CONS creates will be interlea ved with those moved, thereby
diluting the moved cells which must be traced by CONS. Of course, new cells have their
ca rs and cdrs alread y in tospace and therefore do not need to be traced. We avoid this
waste of trace effort through the use of the pointer 1, which points to the top of the free
area, where we will allocate all new cells.



The Method - 96 - Section 4.2

Fig. 14. The Minsky-Fenichel-Yochelson-Cheney-Arnborg Garbage Collector
pointer B; V. Bottom; points to bottom of free area. V.
pointer S: V. Scan; points to first untraced cell. V.
pointer I; V. Top; points to top of tospace. V.

V. Assertions: S ~ B ~ T and T-B Is even.t
pointer procedure CONS(x ,y) • V. Allocate the list cell (x . y). V.

beg in
i f B—I V. If there is no more free space, V.

then V. collect all the garbage. V.
beg i n V. This block is the “garbage collector”. V.

f I i p ~~~; V. Interchange semispaces. V.
f or i — 1 to NR V. Update all user registers. V.

do R[ i l :=move (R( i] ) ;
x: =move (x} ;  y:.move (y) ; V. Update our arguments. V.
uh i I e S<B V. Trace all accessible cells. V.

do begin
S(O]:=move (S [ø]l; V. Update the car and cdr. V.
S[1J :—move (S(1J);
S : - S+2 V. Point to next untraced cell. V.

end
end;

i f B�T then error : V. Memory is full. V.
B [0] : = x; 8 [1] : — y; V. Create new cell at bottom of free area.V.
B & (B : = B+21 V. Return the current value of B V.

end; V. after stepping it to next cell. V.

pointer procedure CAR (x) a x ( O] ; V. A cell consists of 2 words; V.

pointer procedure CORIx) a xli ]; V. car is 1st; cdr is 2nd. V.

procedure RPLACA (x ,y) a x Iø] :- y; V. car(x) :- y V.

procedure RPLACO (x ,y) a xli) := y; ~ cdr(x) :- y V.

boo lean procedure EQ(x,y) a x=y; V. Are x,y are the same object? V.

boo lean procedure ATOM(x) a V. Is x an atom? V.
not tospace~ c);

pointer procedure IIOVE(p) a V. Move p if needed; return new address.V.
if not fromspace(p) 1. We only need to move old ones. V.

then p V. This happens a lot. V.
else beg in

if not toepace(pW]) V. We must move p. V.
then p (0] ;- copy (p); V. Copy At into the bottom of free area. V.

p (61 V. Leave and return forwarding address. V.
end;

pointer procedure COPY(p) a V. Create a copy of a cell. V.



- ~~---- — —~~~~
-.
~~ 

:..
~
- 

~~~~~~~~-~~-~~~~~ — ~~
--- . -

~~~~~~ 

.,

~
— - ‘1

The Method - 97 - Section 4.2

beg i n V. Allocate space at bottom of free area.V.
i f  B�T then error ; V. Memory full? V.
8 (0] : —  p 101: BIll :— pIll; V. Each cell requires 2 words V.
B & (B : — B+21 V. Return the current value of B V.

end; V. after moving it to next cell. V.
V. TOSPACE, FROMSPACE test whether a pointer Is in that semispace. V.



The Method - 98- Section 4.2

Figure 15 shows a diagram of our incremental method in operation, while figure 16
presents the code for our real-time list processing system.

The time re quired by all of the elementary list operations in this algorithm, with the
exception of CONS, can easily be seen to be bounded by a constant because they are
straight-line programs composed from primitives which are bounded by constants. CONS
is also bounded by a constant because the number of mutator registers is a (small) fixed
number (e.g. 16), and the parameter k is fixed. In principle, given the number of registers
and the parameter k , the two loops in CONS could be expanded into straight-line code;
hence the time it requires is also bounded by a constant.

The proof that the incremental collector eventually moves all accessible cells to tospace
is an easy induction. Upon system initialization there are no accessible cells, hence none in
tospace. and so we have a correct basis. Suppose that at some point in the computation we
have just switched semispaces so that tospace is empty. Suppose further that there are N
accessible cells in fromspace which must be moved to tospace. Now, every cell which was
accessible at the time of flipping eventually gets moved when it is traced, unless lost through
RPLACA and RPLACD, and as a result appears between S and B. Furthermore, a cell is

Fig. IS. The Serial Real-Time Method

I I I I I I I + — I — —  — — — —  — — — —  — — — . —  IREGISTER BANK I

I I  
I

t FROI1SPACE /
I I  /

_ _ _  I I  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  /
\ I V I I I  i /-v__ I I--V_v I__ .__ v__

free area c— I new ce l ls  I
t t C

B—> c— I
TOSPACE



—

The Method - 99 - Section 4.2

Fig. 16. The Serial Real-Time List Processing System
integer k; V. Global trace ratio parameter: the

number of cells to trace per cons.V.
P0 i n t er T; V. Top; Points to top of free area. V.

pointer procedure CONS(x ,y) • V. Do some collection,
then allocate (x . y). V.

begin
i f  B-I V. Check if free area is empty. V.

then begin V. Switch semispaces. Memory Is full V.
if S<B then error; V. if tracing is not finished. V.
f I i p U; V. Flip semispaces. V.
for i — l t o NR

do R Ii) : —move (RI ii); V. Update user registers V.
x :”move(x) ; y:—move(y) V. and our arguments. V.

end;
for i — 1 to k wh i I e ScB V. Do k iterations of gc. V.

do begin
S (0] : -move (S 10]); V. Update car and cdr. V.
S( lJ:— move IS IlJ);
S : = S+2 V. Go on to next untraced cell. V.

end;
if  B-I then error;
I : — 1—2; V. Actually create the cell. V.
1(0) :—  x; Till :— y; V. Move in car and cdt. V.
T V. Return address of new cell. V.

end;

pointer procedure CARIx) a V. Move, update and return x(O]. V.
x [0] :- move(x (0J l ;

pointer procedure COR (xl • V. Move, update and return xli). V.
x l i )  : —  move(x ( 1J) ;

V. Procedures not redefined here are as before. V.

moved onl y once , because when it is moved it leaves behind a forwarding address which
prevents it from being moved again. When the pointer S reaches a cell, its edges are
traced--i.e. the cells they point to are moved, if necessary. Finally, only cells which have been
moved appear between S and B. Therefore, the number of those accessible, unmoved cells In
fromspace decreases monolonically, eventually resulting in no accessible, unmoved cells in
fromspace. At this point, the collector is done and can Interchange the two semispaces.

_____



The Method - 100 - Section 4.2

It should be easy to see why the other list operations cannot adversely a ffect the

progress of the collector. A CAR or CDR can move a cell before the collector has traced it,

but since moving it increases B but not 5, it will be traced later. RPLACA and RPLACD
can affect connectivit y, but since all of their arguments are already in tospace, they have
already been moved and may or may not have been traced. Consider RPLACA(p,q).
Suppose that p has been traced and q has not. But since q has been moved but not traced,

it must be between S and B and will not be missed. Suppose, on the other hand, that q has
been traced and p has not. Then when p is traced, the old CAR of p will not be traced.
But this is all right , because it may no longer be accessible. If it still is the target of an edge
from some accessible cell, then it either already has, or will be, traced through that edge.
Finally, if either both p and q have been traced or both have not been, there is obviously
no problem.

This algorithm can also be proved correct by the methods of DL (31,32,58,59), because

this particular sequence of interleaving collection with mutation is only one of the legal
execution sequences of the DL algorithm on a serial machine. Therefore, if the DL
algorithm is correct , then so is this one. The correspondence is this: white nodes are those
which reside in fromspace, i.e. those which have not yet been moved; grey nodes are those
which have been moved but have not yet been traced, i.e. those between S and B; and black
nodes are those which have been moved and traced, and those which have been allocated
directly in tospace (cells below S or above I). Then the assertions are:

A) each node will only darken monotonically;
B) no edge will ever point from a black node to a white one; and

• C) the user program sees only grey or black nodes.
We can now see why the burden is on CAR and CDR rather than RPLACA and

RPLACD--the latter will not violate B so long as the former do not violate C. Using these
assertions , we see that the mutator and the mark phase of the collector are essentially doing
the same thing: tracing accessible cells. The difference is that the collector goes about it

• systematically wherea s the mutator wanders. Thus, only the collector knows for sure when
all the cells in fromspace have been traced so that the two semispaces can be interchanged.

--
._ S— —p



The Method - 101 - Section 4.2

Assertion C also allows CAR and CDR to update a cell in which a pointer to fromspace is
found , thus reducing pointer-chasing for cells which are accessed more than once.

We must now analyze the storage required by this algorithm. Suppose that at some
iiip of the semispaces there are N accessible nodes. Then the collector will not have to
move or trace any more than N cells. If it traces (makes black) exactly k cells per CONS,
then when the collector has finished, the new semispace will contain � N.N/k — N(l.m) cells,
where we let rn—I/ic. If only N of these are accessible, as in equilibrium conditions, then the
next cycle of the collector will copy those N cells back to the first semispace, w hile

performing Nm CONS’es. Hence, we have the inequality:
Maximum SRI Storage Required ~ N(2 +2m) - N (2+2/k)

Therefore, for a program which has a maximum cell requirement of N cells operating
on a fixed -size real memory of 2M cells, the parameter k must be greater than N/(M-N) to
guarantee that tracing is finished before every flip.

If we compare the bound for our algorithm with the bound for MKSMW, using the
unlikely assumption that sweeping and relocation take no time (s—r—O), we find that they
are quite similar in storage requirements.
Max imum MKSIII4 Storage Required < N(l.5+2m)
Max i mum SRI Storage Required � N(2+2m)

If m=l (which corresponds to one collector iteration per CONS), the two algorithms
differ by only I part in 8, which is insignificant given the gross assumptions we have made
about MKSMW’s sweeping and relocation speeds. It is not likely that the storage
requirements of a MKSMW-type algorithm can be significantly improved because it cannot
take advantage of techniques like stack threading or CDR-coding. Stack threading cannot
be done, because accessible cells have both their car and cdr in use.5 CDR-coding using
MKSMW is very awkward because CONS must search for a free cell of the proper size and
location before allocating a cell, since the free space Is fragmented. On the other hand, our

5. The Deutsch-Schorr-Wa,te collector (57, p. 417-418) threads the stack but temporarily
reverses the list structure, thus locking out the mutator for the duration.

• ~~~~~~~~~ 
- 

-~~~~~~ —
--

~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ •~~~~—— -  •~



-

The Method - 102 - Section 4.2

algorithm can be easily modified to use CDR-coding and thereby reduce storage
requirements to approximately N(I.m).

4,3 The Par ameter m ( 1/k)

If k is a positive integer, then the parameter m (=1/k) will lie in the interval O<m~l.
Therefore, the factor of km in our bounds must lie between I and 2. This means that the
storage requirements for our method can be adjusted by varying k, but they will not vary
by mole than a factor of 2 (so long as k is integral). Now, the time to execute CONS is
proportional to k.c , for some suitable constant c. Therefore, one can trade off storage for
CONS speed, but only within this limited range. Furthermore, as k rises above 4 the
storage savings become insignificant; e.g. doubling ic to 8 yields a storage savings of only
10V., yet almost doubles CONS time. Of course, if storage is limited and response time need
not be fast , larger K’s might be acceptable.

If the method is used for the management of a large database residing on secondary
storage. k could be made a positive rational number less than I, on the average. For
example, to achieve an average k=l/3 (m—3), one could have CONS perform an iteration of
the collector only every thi rd time it was called. The result of this would double the storage
required (m.l=4), but would reduce the average CONS time by almost 2/3. Of course, the
worst case time performance for CONS would still be the same as if k were I.

This Improvement is significant because each iteration of the collector traces all the
pointers of one record. This requires retrieving that record, updating all of its pointers by
moving records if necessar y, and then rewriting the record. If there are I pointers to be
updated, then t+l records must be read and written. This sounds like a lot of work, but this
much work is done only when a record is created; if there are no record creations, then with
the exception of the first access of a record via a pointer stored in another record, the
accessing and updating functions will be as fast as on any other file management scheme.
Therefore, since secondary storage is usually cheap but slow, choosing kcl in a file
management system a llows us to trade off storage space against average record creation

_ _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The Parameter m (— I/k) - 103 - Section 4.3

time.

With a little more effort, K can even be made variable in our method, thus allowing a
program to dynamically optimize its space-time tradeoff. For example, in a database
n~ana gernent system a program might set lc=0 during an initial load of the database because
it knows that even though there are many records being created, none are being let go, and

therefore the continual copying of the collector will achieve no compaction. The function
READ in LISP might want to exercise the same prerogative, for the same reason. Of
course , any reduction of Ic should not take effect until the next flip, to avoid running out of
storage before then.

4.4 A User Pro gram Stack

If the user program utilizes its own stack as well as a bank of registers, the stack may
(in theory) grow to an unbounded size and therefore cannot be wholly updated when the
semispaces are flipped and still preserve a constant bound on the time for CONS. This
problem may be trivially solved by simulating the stack in the heap (i.e.
PUSH (x )  E CONS (x , stack ) and POP (I • COR (stack)); this simulation will satisfy the
bounded-time constraints of classical stack manipulation. However , this simulation has the
unfortunate property that accessing items on the stack requires time proportional to their
distance from the top.

In order to maintain constant access time to elements deep in the stack , we keep
stack -like allocation and deallocation strategies but perform the tracing of the stack in an
incrementa l manner . We first fix the stack accessing routines so that the user program
never sees pointers in fromspace. This change requires that the MOVE routine must be
applied to any pointers which are picked up from the user stack. We must then change
CONS to save the user stack pointer when the semispaces are flipped so that it knows
which stack locations must be traced. Finally, the user stack POP routine must keep this
saved pointer current to avoid tracing locations which are no longer on the user stack (68). 

~~~~~~~~— - - -—~~ -—~~~~~~~~~~~~~~ — - - •~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • - -•


A User Program Stack - 104 - Section 4.4

The only remaining question is how many stack locations are to be traced at every
CONS. To guarantee that stack tracing will be finished before the next flip, we must
allocate the stack tracing ratio k’ (the number of stack locations traced per CONS) so that
the ratio k’ /k is the same as the ratio of stack locations in use to cons cells in use. We
recompute k’ at each flip, because the “in use ” statistics are available then. Due to this
compuiation, a constant bound on the time for CONS exists only if the ratio of stack size to
heap size is bounded, and is proportional to that ratio.

Figure 17 exhibits these changes.
Barbara Liskov [62) has suggested tracing the user stack from the bottom instead of

from the top, as we have done here. The rationale behind this is that many of the pointers
at the top of the stack will have been discarded by the time the collector gets there, and

those discarded pointers may never be traced. Space requirements may be slightly reduced
as a result , since some garbage may be detected earlier. However, since the mutator must
continue checking (and possibly tracing) every pointer it accesses from the stack , the change
results in only a marginal improvement in tAme.

The complexity involved in this conversion is essentially that necessary to make the
serial real-time method work for several different spaces [67]. In such a system, each space
is a contiguous area in the address space disjoint from the other spaces, and has its own
representation conventions and allocation (and deallocation) strategies. The system of this
section thus has two spaces, the heap and the user stack, •which must be managed by
cooperating routines.

4.5 CDR-C oding (Compact List Repre sentation)

In this section, we discuss the interaction of our algorithm with a partial solution to
the second big problem with list structures: their inefficient use of storage. Whereas a list of
5 elements in a language like Fortran or API.. would require only a 5 element array, such a
list in LISP requires 5 cells having two pointers apiece. So-called “CDR-coding” (41,11,22]
can reduce the storage cost of LISP lists by as much as SOt The idea is simple: memory is


~~~~~~~~~~~~~~~~~~~ - — — —~~~~~~~~~~~~
• -

~~~~~~~~~~~
..V -——-

CDR-Coding (Compact List Representation) - 105 - Section 4.5

Fig. 17. Real-Time System with User Stack
V. The user stack res.des in the array “ustk” and grows upward from

“ustk[O)”. The global variable “SP” is the user stack pointer and
points to the current top of the user stack. The global variable “SS”
scans the user stack and points to the highest stack level which
has not yet been traced by the collector. V.

integer SP in i t (e) ; V. User stack pointer. V.
integer SS in it (ø) ; V. User stack scanner. V.

procedure USER_PUSH(x) • V. Push x onto user stack. V.
beg i n V. Note: x will not be in from~pace. V.

SP := SP+1;
ustk (SP] := x

end; •

pointer procedure USER_POP U a V. Pop top value from user stack. V.
move (ustk ISP]) & V. Move value if necessary; V.
begin

SP : = SP-1; V. then update stack pointer. V.
SS : = min (SS ,SP) V. Keep stack scanner current. V.

end;

P0 i n ter procedure USER_GET (n) a V. Get n’th element from top of stack. V.
ustk (SP -n] := move(ustk(SP-.n]) ; V. Move and update if necessary. V.

pointer procedure CONS(x ,y) • V. Collect some, then allocate (x . y). 1.
begin

i f B=T V. Check if free area is empty. V.
then begin V. Interchange semispaces. V.

if SS>8 or S<B V. Check for memory overflow. V.
then error ;

N : = f l i p U; V. Set N to number of cells in use. V.
SS := SP; V. Start stack scan at top of stack. V.
k’ := ce l l (k*SS/N) ; V. Calculate stack trace effort. V.
for I = 1 to NR

do R Ii] : — move (R I i)) ; V. Update user registers V.
x: =move (x) ; y :=move (y) V. and our arguments. V.

end;
for i = 1 to k ’ wh i le SS>Ø V. Move k’ user stack elements and V.

do begin V. update scan pointer. V.
ustk ESS] : =move(ustk lSS]) ;
SS := SS-1

end;
for i = 1 to k wh i le S<B V. Do k iterations of gc. V.

do begin
S [81 : — move (S [8)) ; V. Trace & update car, cdr. V.
S(1] := move (S[1]) ;
S :- 5+2

• CDR-Coding (Compact List Representation) - 106 - Section 4.5

end;
i f B=T then error ;
I : T —2; V. Actually create the cell. V.
T [Ø1 := x; 1(1) :— y; V. Install car and cdr. V.
I V. Return address of copied cell. V.

• end;

divided up into equal-sized chunks called Q,s. Each Q~is big enough 1o hold 2 bits plus a
pointer p to another Q The 2 bits are decoded via the following table:
00 - NORMAL; CAR of this node is

~ ; CDR is in the following Q
01 - NIL; CAR of this node is ~; CDR is NIL.
10 - NEXT; CAR of this node is fr ; CDR Is the following O~
LI - EXTENDED; The cell extension located at p holds the car and cdr for this node.6

CDR-coding can reduce by 50V. the storage requirements of a group of cells for which
CDR is a I-I function whose range excludes non-nil atoms. This is a non-trivial saving, as

all “dot-less ” s-expressions read in by the LISP reader have these properties. In fact, Clark
and Green (22) found that after linearization 98V. of the non-NIL cdrs in several large LISP
programs referred to the following cell. These savings are due to the fact that CDR-coding
takes advanta ge of the implicit linear ordering of addresses in address space.

Wh at implications does this coding scheme have for the elementary list operations of
LISP? Most operations must dispatch on the CDR-code to compute their results, and
RPLACD needs special handling. Consider RPLACD(p,q). If p has a CDR code of NIL
or NEXT, then it must be changed to EXTENDED, and the result of CONS(CAR(p),q)

• ~. ~ ~~~~~ itT p.7

The number of memory references in the elementary operations has been minimized
by making the following policies [42]:

6. These conventions are slightly different from those of (41,11).
7. We note in this context that if RPLACD is commonly used to destructively reverse a

list--e.g. by LISP’s “NREVERSE”~-the system could also have a “PREVIOUS” CDR-code
so that RPLACD need not call CONS so often.

CDR-Coding (Compact List Representation) - 107 - Section 4.5

1) every EXTENDED cell has a NORMAL extension;
2) the user program will never see a pointer to the extension of an EXTENDED

cell; and

3) when COPY copies an EXTENDED cell, it reconstitutes it without an
extension.

CONS, CAR , CDR, RPLACA and RPLACD must be changed to preserve these
assertions , but EQ, and ATOM require no changes from their non-CDR-coded versions.
Since an EXTENDED cell cannot point to another EXTENDED cell, the forwarding of
EXTENDED pointers need not be iterated. These policies seem to minimize memory
references because each cell has a constant (between flips) canonical address, thereby
avoiding normalization (80] by every primitive list operation.

CDR-coding requires a compacting, linearizing garbage collector if it is to keep
allocation simple (because it uses two different cell sizes) and take full advantage of the
sequential coding efficiency. The MFYCA algorithm presented above compacts, but does
not linearize cdrs due to its breadth-first trace order. However, the trace order of a
MFYCA collector can be easily modified at the cost of an additional pointer, PB. PB keeps
track of the previous value of B (i.e. PB points to the last cell copied), so that tracing the cdr
of the cell at PB will copy its successor into the next consecutive location (B). thus copying
whole lists into successive contiguous locations.

The meaning of the scan pointer S is then changed slightly so that it points to the
next word which must be updated rather than the next cell. Finally, the trace routine is
modified so that tracing the cdr of PB has priority over tracing the edge at S and the
condition on the trace loop is modified to amortize both the copying effort (measured by
movements of B) and the tracing effort (measured by movements of S) over all the CONS’es.
These modifications do not result in a depth-first trace order, but they do result in
cdr-cha ins being traced to the end, with few interruptions. Thus an MFYCA collector can
minimize the amount of memory needed by CDR-coded lists.

—~~~~~~~~~
-.

CDR-Coding (Compact List Representation) - 108 - Section 4.5

Figure 18 presents a real-time list system which utilizes CDR-coding.
The size of the tospace needed for CDR-coding is (I.m) times the amount of space

actually used in fromspace. With a coding efficiency improvement of e over the classical
storage of LISP cells, and under equilibrium conditions, we have the inequality:
Max imum SRTC Storage Required � Ne(2+2m)

Since we have claimed that e~ .5, we get the following estimate: -

SRTC Storage Required N(1+m) (!)

But this latter expression is less than the bound computed for MKSMW. Thus,

CDR-coding has given us back the factor of 2 that the copying gatbage collector took away.
The real-time properties of our algorithm have not been affected in the least by

CDR-coding; in fact , good microcode might be able to process CDR-coded lists faster than
norma l lists since fewer references to main memory are needed.

CDR-coding is not the final answer to the coding efficiency problems of list storage.
because far more compact codes can be devised to store LISP’s s-expressions. For example,

both the car and cdr of a cell could be coded by relative offsets rather than full pointers
[22]. However , a more compact code would represent some cells in so few bits that the
pointer we need for a forwarding address would not fit, rendering our scheme unworkable.
Part of the problem is inherent in LISP’s small cell size; small arra ys can perform much
better.

4.6 Vectors and Arra ys

Arrays can be included quite easily into our framework of incremental garbage

•
• collection by simply enclosing certain parts of the collector program In loops which iterate

through all the pointers in the arra y, not just the first and second. The convergence of the
method with regard to storage space can also be proved and bounds derived. However, the

method can no longer claim to be real-lime because neither the time taken by the array
allocation function (ARRAY -CONS) nor the time taken by the array element accessing

function is bounded by a constant. This unbounded behavior has two sources: copying an

Vectors and Arrays - 109 - Section 4.6

FAg . 18. Real-Time System with CDR-Coding
pointer S; V. Next cell whose car needs tracing. V.
Pointer PB; V. Pointer to previous value of B. V.
pointer L,H; V. Low and high limits of tospace. V.

V. Assertion: L � S ~ PB < B ~ T � H.V.
po inter procedure CONS(x ,y) • V. Create a new cell in tospace with V.

begin
-

V. car of x and cdr of y. V.
i f 1—8<2 V. Flip when free area is exhausted. V.
then begin V. This part is the same as usual. V.

i f S<B then error ; V. Copying is not done; memory ~~~~~~~~f l i p U; V. Interchange semispaces. V.
for i = 1 to Nfl
do R [1) : —move (R (i l) ; V. Update user registers. V.
x := move (x) ; g:=move(y) V. Update our arguments. V.

end;
w h i le (S+B)/2-L < k*(H-T—2) and S<B V. Trace and copy a measured amount.?.
do i f PB<B V. Extend current list, if possible. V.

then PB : (B & COR (PB)); V. CDR will trace this edge for us. V.
e lse begin

S [0] : -move IS [8)); V. Update this edge. V.
S : = S+1 V. Step S over this cell. V.

end;
i f 8=1 then error ; V. Check for memory overflow. V.
I : = 1—1; V. Create new cell at top of free area.V.
i f y=nil
then code (T) := “NIL” V. If y is special ca se, ‘4
e I se i f y=I+1 V. then create a short cell V.

then code IT) : — “NEXT” V. with appropriate cdr-code. V.
e I se begin V. Otherwise, create a normal cell. V.

i f B— I then error ; V. Need more space for the cdt. V.
I := 1—1;
code (T) :- “NORMAL”; V. Set in “NoRMAL” cdt-code. V.
T [IJ :— y V. Set in the cdr. V.

end;
1 [8) : — x ; V. Set the car in the new cell. V.
I V. Return the new cell. V.

• end; ,
~~~ .•

pointer procedure CAR (x ) a V. CAR must move cell it uncovered. V.
brplaca(x , move (bcar (x ))) ;  V. Update this edge. V.

procedure RPLACA(x ,y) a V. x [O] := y. May require subtlety. V.
brplaca(x ,y) ;

pointer procedure BCAR(x) • V. Basic car; dispatch on CDR-code. V.
i f  code (x )- ”EXTENOED” V. Type “EXTENDED” means V.

then (x [81 ) (0) V. indirect car. V.
e I se x [8] ; ‘4 AU other types have normal cars. V.



Vectors and Arrays - 110 - Section 4.6

pointer procedure BRPLACA(p,q) • V. Basfr rplaca; dispatch on CDR-code. V.
i f  code (p) = “EXIENDEO” V. If extended cell, clobber indirectly. V.

then (p(O) ) [O] := q
e I se p [01 : = q; V. All others have normal car. V.

pointer procedure COR (
~c) • V. CDR moves uncovered cell, but updates V.

brp I acci (x , move (bcdr (x ) ) ) ;  V. only if still possible after move. V.

procedure RPLACO(x ,y) • V. x(I] := y. May require brute force. V.
beg in

i f  code(x )= ”NIL” or V. Test for screw cases. V.
code (x )= ”NEXT” V. Cannot have code(x)—”EXTENDED”. V.
then

begin pointer p; V. Extend the cell x. V.
P : = CONS (CAR (x ) ,“DUMMY”); V. Construct guaranteed NORMAL cell. V.
x : — move (x ) ; y : — move (y) ; V. Update arguments in case CONS flipped. V.
x [0] : p; V. Leave forwarding address in old cell. £
code (x ) : — “EXTENDED” V. The old cell has now been extended. V.

end;
brp I acd(x , y) V. Finally replace the cdr. V.

end ;

pointer procedure BCOR(x) a V. Basic cdr; dispatch on CDR-code. V.
i f code (x )  = “NORMAL” then x (1) V. NORMAL cells have a second word. V.
e lse i f  code (x )= ”NIL” then nil V. Interpret NIL CDR-code. V.
e I se i f code (xl =“NEXT” then x+1 1. Thterpret NEXT CDR-code. V.
e I se (x [0) ) [1]; ‘4 EXTENDED cells point to NORMAL

cells. ‘4
pointer procedure BRPLACO(p,q) • V. Handle easy cases of RPLACD. V.

i f code (p) =“EXTENDEO” V. We have extended cell; V.
then (p (0] ) (1] : = q V. clobber the NORMAL indirect. V.

e lse i f  code(p)= ’NORMAL” V. The easiest case of all. V.
then p(l] :- q

e I se c;; V. In all cases, return q as value. V.

integer procedure SIZE(p) • V. Find the size of p from its CDR-code. V.
i f cod e (p) =“NORMAL” V. “Nil1”, “NEXT”, and “EXTENDED”

then 2 else 1; all h~vr size(p)=1. V.

pointer procedure COPY(p) • V. Copy the cell p; append to current V.
beg in V. train If possible. V.

i f  PB=B -2 and bcdr (P8) -p ‘4 See If we can hop this NEXT train. V.
then beg in

code (PB) : = “NEXT” ; V. Convert NORMAL cell to NEXT cell. V.
B : — B—i V. Reuse extra space now available. V.

end;
• if bcdr (p) — nil V. Create a NIL cell, if appropriate. ‘4

then code(B) := “NIL”;



Vectors and Arrays - 111 - Section 4.6

else code (B) :—  “NORMAL” ; V. Otherwise, all cells are NORMAL. V.
B (8) := bcar(p) ; V. Copy over car; V.
brpl accl (B,bcdr(p)) ; V. and cdr too, if necessary. V.PB := B; V. PB is end of current NEXT train. V.B := B+size ( B) ; V. Step B over newly copied cell, V.i f  B>T then error ; V. check for memory overflow, V.
PB 

• 
V. and return pointer to new copy. V.

• end;
• V. Procedures not redefined here are as before. V.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~


Vectors and Arrays - 112 - Section 4.6

array and traci ng all its pointers both require time proportional to the length of the array.
Therefore, if these operations are included in a computer as non-interruptable primitive
instructions , hard interrupt response time bounds for that computer will not exist. However ,
an arbitrary bound (sa y 10) placed on the size of all arrays by either the system or the
programmer , allows such bounds to be derived.

Guy Steele [83) has devised a scheme which overcomes some of these problems. He
gives each vector a special link word which holds either a forwarding pointer (for vectors in

• fromspace which have been partially moved), a backward link (for incomplete vectors in
tospace), or NIL (for complete vectors). MOVE no longer copies the whole array, but only
allocates space and installs the forward and backward links. Any reference to an element of
a moved but incompletely updated vector will follow the backward link to the fromspace
and access the corresponding element there. When the scan pointer in the tospace
encounters such a vector , its elements are incrementally updated by applying MOVE to the
corresponding elements of its old self; after the new one is complete, its link is set to NIL.
Element accesses to incomplete vectors compare the scan pointer to the element address;
access is made to the old (new) vector if the scan pointer is less (greater or equal). Tracing
and updating exactly kn vector elements (not necessarily all from the same vector) upon
every allocation of a vecto r of length n guarantees convergence.

Steele’s scheme has the following properties: the time for referencing an element of any
cell or vector is bounded by a constant while the time to allocate a new object of size n is
bounded by c,kn+c 2, for some constants c, and c2. Hence, a sequence of list and vector
operations can be given tight time bounds.

• 4.7 Hash Tables and Hash Links

Some recent artificial intelligence programs written in LISP have found it convenient
to associate p op erly l i s ts with list cells as well as symbolic atoms. Since few cells actually
have property lists, it is a waste of storage to allocate to every cell a pointer which points to

• the cell’s l roperty list . Therefore, it has been suggested [18) that one bit be set aside in

Hash Tables and Hash Links - 113 - Section 4.7

every cell to indicate whether the cell has a property list. If so, the property list can be
found by looking in a hash table, using the address of the list cell as the key.

Such a table requires special handling in systems having a relocating garbage
collector. Our copying scheme gives each semispace its own hash table, and when a cell is
copied over into tospace , its property list pointer is entered in the “to” table under the cell’s
new address . Then when the copied cell is encountered by the “scan” pointer, its property
list pointer is u~.rlated along with its normal components. A “CDR-coding” system with two
“scan ” pointers should also keep a third for tracing property list pointers to prevent
property lists from destroying chains of “next ”-type cells.

4.8 Refez’ence Countin g

In this section we consider whether reference counting can be used as a method of
storage reclamation to process lists in real time; i.e. we try to answer the question, at least for
the real-time context , is reference counting worth the effort, and if so, under what
conditions?

A classical reference count system [25,97) keeps for each cell a count of the number of
pointers which point (refer) to that cell; i.e. its in-degree. This reference count (refcount) is
continually updated as pointers to the cell are created and destroyed, and when it drops to
zero, the cell is reclaimed. When reclaimed, the relcounts of any daughter cells it points to
are decremented, and are also reclaimed if zero, in a recursive manner.

Reference counting appears to be unsuitable for rea l-time applications because a
potentiall y unbounded amount of work must be done when a cell is let go. However, if a

free stack is used to keep track of freed objects instead of a free list , the newly freed cell is
simply pushed onto the free stack. When a cell is needed, it is popped off the stack , the
relcounts of its daughters are decremented, and if zero, the daughters are pushed back onto
the stack. Then the cell which was popped is returned. In this way, only a bounded
amount of work needs to be done on each allocation.

• • • • : T •~~ - • __________ ______ • • •~ •— —z ~~~~~ zt a,i,L..iil4

Reference Counting - 114 - Section 4.8

We now consider tile storage requirements of a reference counting (RC) system. in

addition to the memory for N cells, we also need room for N refcounts and a stack. Since

the refcounts can go as high as N, they require approximately the same space as a pointer.

So we have:

Max imum RC Space Required ~ 1.SN + the size of the “free stack”

The worst case stack depth is N. However , whenever a cell is on the stack , its refcount
is zero, so we can thread the stack through the unused refcounts! So we now have:
Max imum RC Space Required ~ l.SN

Reference count systems have the drawback that directed cycles of pointers cannot be

reclaimed. It has been suggested [57,30] that refcounts be used as the “primary” method of

reclamation , using garbage collection (CC) as a fallback method when that fails. Since RC
will not have to reclaim everything and since the average refcount is often very small, it has

also been suggested that a truncated refcount (a bounded counter which sticks at its highest

value if it overflows) be used to save space.

We say that ga rbage in a combination RC and CC system is ref-degradable if and
only if it can be reclaimed by refcounts alone. Cells whose truncated refcounts are stuck are
theref ore non-ref -degradable.

What is the effect of a dual system in terms of performance? Whatever the RC system
is able to recycle puts off flipping that much longer. By the time a flip happens in such a
two level system , there is no ref-degradable garbage left in tospace. Therefore, the turnover

of the semispaces is slowed.

How much memory does the dual.systern require? If trunca’e~ ~re~cp~ip~s a~~, used, the

free stack cannot be threaded through a cell’s refcount because it is not big enough to hold
a pointer . Therefore, using this method and assuming only a few bits worth of truncated
refcount per cell, we have:

Max imum SRT+RC Space Required s N(2 +2m) + RC free stack � N(2.S+2m)

Reference Counting - 115 - Section 4.8

So it appears that we have lost something by adding refcounts (even tiny ones),
l)ecause we still need room for the free stack.

Let US 110W examine more closely the average timing of CONS under a pure RC
versus a pure SRT system. The average time for CONS under the RC system is the same
as the maximum time since there is no freedom in the algorithm. The time for CONS in
SRT is c,k +c 2, where c1 and 2 are constants. Now c2 is simply the time to allocate space
fr om a contiguous block of free storage. Certainly incrementing a pointer is much less
complex than popping a, cell from a stack , following its pointers, decrementing their
refcou nts , and if zero, pushing them onto the stack. Therefore, we can choose k small
enough8 so that the average time to perform CONS with our SRT method is smaller than
the average time to perform CONS in an RC system.9 This analysis does not even Count
the additional time needed to keep the refcounts updated. Of course, the storage required
for our “pure” SRT system may be many times the storage of the RC system. but SRT wiH
have a smaller a verage CONS time.

Since tills seems counterintuitive, or at least reactionary (given the current penchant
for recycling), we give a rationale for why it is so. Reference counting traces the garbage
cells , while normal garbage collection traces the accessible cells. Once the number of
garbage cells exceeds the number of accessib le cells in an region of storage, it is faster to
copy the accessible cells out of the region and recycle it whole. When m>l, reference

counting cannot compete timewise with garbage collection because RC must trace a cell for
every cell allocated while GC traces on the avera ge only a fraction (I/rn) of a cell for every
cell allocated.

On the other hand, if we wish to minimize storage by making mcI , a dual scheme with
truncated refcounts should reduce the average CONS time over that in the pure scheme.
However , CDR -coded lists and other variable sized objects cannot be easily managed with

8. Section 4.3 deals with non-integral k’s.
9. We can discount the additional time occasionall y required by CAR and CDR in our

mr’thocl because any relocation and pointer updating done by them is work that we have
alread y charged to CONS, and does not have to be repeated.

Refeicncc Counting - 116 - Section 4.8

reference counting because the object at the top of the free stack is not necessarily the right
size for tile current allocation. Thus, CDR-coding can reduce the storage requirement of a
“pure” scheme below that of a “dual” system with the same m. But even on a system with
objects of uniform size, we are skeptical whether the increased average efficiency of CONS
in the “dtial” system will offset the increase in k needed to keep the storage requirements the
same as the “pure” system. We conclude that, at least on a real memory computer, reference
counting is probably not a good storage management technique unless one a) has unifo rml y
sized objects; 1 ’) use ’s full counts; and c) guaran tees no cycles.

This is not to say that reference counts are not useful. If the LISP language were
extended with a function to return the current refcount of an object, and suitably clean
semantics were associated with this function, then one might be able to make use of this
information within the user program to speed up. certain algorithms, such as structure
tracing or backtracking, a Ia Bobrow and Wegbreit [17). This author is not aware of any
language which makes this information available; if it were available, good programmers
would certainly find a use for it.

4.9 The Costs of Real- Time List Processi ng

The a mount of storage and time used by a real-time list processing system can be
compa red with that used by a classical list processing system using garbage collection on
tasks not requiring bounded response times. The storage required by a classical
non-compacting garbage collector is N(lep.), if the system uses the Deutsch-Schorr-Waite
(DSW) [57, p. 417-4181 marking algorithm, and N(l.5.~) if it uses a normal stack , for some

positive p. If CDR-coding is used, copying must be done; the storage requirement is then
Ne(2.2p), where e is the efficiency of the coding. Since e is near .5 (22). the requirement is
about N (l . p) , so that CDR-coding requires approximately the same space as DSW .
Comparing these expressions with those derived earlier for our real-time algorithms, we

find that p rocessin g LISP lists I n real-time requires no more sp ace than a non-real- time
system using 1)3W . If la rger non-uniformly-sized objects like arrays must be mana ged,

L - -~~•~~ - •~~ ~~~~ ._

Tile Costs of Real-Time List Processing - 117 - Section 4.9

real-tiiiie ca pability requires no more space than the MFYCA system, since a copying
collector is alread y assumed .

The ancui ge time requirement for CONS in our real-time system is virtually identical

to that in a classical MFVCA system using the same cell representation and the same
amount of storage . This is because 1) a classical system can do ~N CONS’es after doing a
garbage collection which marks N nodes--thus giving an average CONS/mark ratio of ji
and allowing us to identify ~i with rn--and 2) garbage collection in our real-time system is
almost identica l to that In the MFYCA system, except that it is done incrementally during

-

calls to CONS. In other words , the user program pays for the cost of a cell’s reclamation at
the ttme the cell is created by tracing some other cell.

CAR and CDR are a bit slower, because they must test whether the value to be
returned is in frornspace. However , as noted above, any cell movement done inside CAR or
CDR should not be charged to CAR or CDR because it is work which the collector would
otherwise have to do and therefore has already been accounted for in our analysis of
CONS. Therefore, CAR and CDR are only slower by the time required for the semispace
test .10

Since RPLACA, RPLACD , EO~, and ATOM are unchanged from their classical

versions, their timings are also unchanged.

The overhead calculated for our serial system can be compared to that in Wadler ’s
parallel system [93). According to his calculations, a parallel garbage collector requires
significantly more total time than a non-parallel collector. But this contradiction disappears
when it is realized that his pa rallel collector continues tracing even in the absence of any
cell cr eation activity. Since our system keys collector activ ity to cell creation, the collector
effort is about the same as on a non-real-time system.

10. In Greenblatt ’s LISP niachine [41), the virtual memory map performs the semispace test
as an integral part of address translation. Thus on this machine, a successful semis pace test
requires na iy an additional microinstruction!

Applications - 118 - Section 4.10

4.10 Applications

4.10.1 A computer with a real memory of fixed size

This application covers the classica l 7090 LISP [64] as well as a LISP for a
microcomputer . We conceive of even 16-bit microcomputers utilizing this algorithm for
rea l-time process control or simulation tasks. Each of the list processing primitives is

intended to run with interrupts inhibited, so that all interrupt processing can make use of
list storage for its buffers and other needs. Multiple processes may also use these primitives
so long as CONS, CAR , and CDR are used by one process at a time; i.e. they are protected
by one system-wide lock. Of course, the system must be aware of the registers of every
process.

For these real memory applications, we want to put as much of the available storage
under the management of the algorithm as possible. Thus, both atoms (here we mean the
whole LISP atom-com p lex , not just the print-name) and list nodes are stored in the
Senlispaces . COR-coding is usually a good idea to save memory, but unless the bit-testing is
done in microcode, it may be faster to use normal cells and increase the parameter k to keep
the storage size small .

The average CONS time is reduced by putting off flipping until all of the free space
in tospace is exhausted , i.e. B—I. Thus, after all moving and tracing is done, i.e. S—B,
allocation is trivial until B=T. As a result, the average CONS time in our real-time system is
appro%imatei y the same as that in a classical system. Of course, with a memory size of 2M,
the maximum number of cells that can be sa fely managed is still Mkl(k.l).

4.10.2 A virtual n~einor y computer

The current epitome of this application is Multics LISP with an address space of 236

(
~ loll) 36-bit words , room for billions of list cells. The problem here is not in reclaiming

cells that are let go, but keeping accessible cells compact so that they occupy as few pages of
real memory as possible . The MFYCA algorithm does this admirably and ours does almost

_ _

A virtual memory computer - 119 - Section 4.10.2

as well.

Our scheme is still real-time on a virtual memory computer, but the bounds on the
elementary list operations now have the order of magnitude of secondary storage operations .

There are some problems, however. Unlike MFYCA, wherein both sernispaces were
used only during garbage collection, our method requires that they both be active (i.e.
pa rtiall y in real memory) at all times. This may increase the average working set size. A
careful anal ysis needs to be made of our algorithm in order to estimate tile additional cost
of incremental garbage collection . Brief consideration tells us that the active address space
varies from a minimum of N(l+rn) just before a flip to N(2.2nt) just after. Since at a flip the
user program registers are updated in numerical order, relatively constant pointers should
be placed in the lower numbered registers to keep the trace order of constant list structure
similar between flips. If the average size of an object is much larger than the size of a
pointer , the working set may also be reduced by storing the forwarding addresses in a
separate table instea d of in the old objects in ftomspace [16).

In a virtual memor y environment, the active address space will automatically expand
and contract in response to changes in the number of accessible cells if 1) FLIP re-adjusts
the size of froms pace to (1+rn)(cells in tospace] j ust before interchanging the semispaces; and
2) flipping occurs when tracing finishes rather than when B meets I. This policy, plus a

smaller k than a real memory computer would use, should give both a fast CONS and a
tolerable working set size. Tile parameter k can also be dynamically adjusted to optimize
either i unning time (including paging) or cost according to some pricing policy by following
an anal ysis siniilar to that of Hoare and others [55,19,3).

4.10.3 A datab ase management system

We conceive of a huge database having millions of records, which may contain
pointers to other records , being managed by our algorithm. Examples of such databases are
a bill of mater ials database for the A pollo Project, or a complete semantic dictionary and
thesaurus of English for a language understanding program. Performing a classical

. .~~~~~~~
—-.

~~~~~~
-
~~ 

.—-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



A database management system - 120 - Section 4.10.3

garbage collection on such a databank would be out of the question, since it might require
days or weeks to complete, given current disk technoiogy.

Some of these large database systems currently depend on reference counts for storage
reclamation , and so do not allow directed cycles of pointers. Since our method performs
genera l garbage collection, this restriction could be dropped. Moreover, given enough
space, our algorithm can take even less time than a reference count system. When compared
with a classica l garbage collection system, our method would not save any total time in
processing transactions against such a data base, but it would avoid the catastrophic
consequences of a ga rbage collection during a period of heavy demand.

This case is very much like case I, the real memory computer, because we assume that
the databas e is orders of magnitude too big to fit into primary memory and thus that there
is little hope for a speedup from the locality of reference effect. “Read memory” and “store
memory” instructions here apply to secondary storage; the constant bounds for the
elementary operations are now on the order of milliseconds rather than microseconds.
Therefore, almost everything that we say about real memory implementations also applies to
large databa se implementations, except that space is cheaper and time is more dear.

4.10.4 A tot ally new computer architecture

We conceive of an architecture in which a CPU is connected to a list memory instead
of a random access memory. Machines of this architecture are similar to “linking automata”
described by Knuth [57, p. 462-463) and “storage modification machines” described by
Schonhage [77]. At the interface between the CPU and the memory sits a bank of pointer
registers , which point at particular cells in the list memory. Instead of a hus which
commun icates both addresses and values, with read and write commands, the memory
would have only a data bus and commands like CAR , CDR, CONS, RPLACA , RPLACD,
and ATOM , whose arguments and returned values would be in the pointer registers. The
CPI I would not have access to the bit strings stored in the pointer registers, except those
wI,i’ Is 1,ointed to atoms (objects outside both fromspace and tospace). This restriction is

L --~~-~~~~~~~~~~~~~ -.---~~~~~—.-— - —.-~~~~
-.—~~~~-—

.. -



A totall y new computer architecture - 121 - Section 4.10.4

necessary to keep the CPU from depending upon memory addresses which might be
changed by the management algorithm without the CPU’s knowledge.

An advantage of such a system over random access memory is the elimination of the
huge address bus that is normally needed between the CPU and the memory, since

addresses are not dealt with directly by the CPU. As the number of bits on a chip
increases , the number of address lines and supporting logic becomes a critical factor .
However , since address lines are not available to communicate with other memory chips, we

have not yet been able to find a satisfactory wa y of scaling this memory up.
Our method of garbage collection can also be used with a random access write-once

memor y by appending an extra word to each cell which holds the forwarding address when
t hat cell is eventually moved. Using such a system, the cells in tospace cannot be updated
until they are moved to the new tospace after the next flip. In other words, t h ree semispaces

need to be act ive at all times. In addition to these changes, RPLACA and RPLACD must
actua lly per form a CONS, just like RPLACD occasionally does in our CDR-coding system.
Perhaps the write-once property can eliminate the need for transaction journals and backup
tapes .

4.11 Conclusions and Future Work

We have exhibited a method for doing list processing on a serial computer in a
real-tiiiie environment where the time required by all of the elementary list operations must
be bounded by a constant which is independent of the number of list cells in use. This
algorithm was made possible through: I) a new proof of correctness of parallel garbage
collection based on the assertion that the user program sees only marked cells; 2) the
icalization t hat collection effort must be proportional to new cell creation; and 3) the belief
that the complex interaction required by these policies makes parallel collection unwieldy.
We have also exhibited extensions of this algorithm to handle a user program stack,
“COR-coding”, vecto rs of contiguous words, and hash linking. Therefore, we consider our
system to be an attractive alternative to reference counting for real-time storage management 

-~~~ ;_ .~~4



Conclusions and Future Work - 122 - SeAion 4.11

and have shown that , given enough storage, our method will outperform a reference count
system, without requiring the topological restrictions of that system.

Our real-time scheme is strikingly similar to the incremental garbage collector
proposed independently by Barbacci for a microcoded LISP machine [8]. However, his
non-real-time pi~oposal differs in the key points above. Our system will itself appear in
microcoded form in Creenblatt ’s LISP machine [41,11).

There is still some freedom in our algorithm which has not been ex plored. The order
in which the cells are traced is not important for the algorithm’s correctness or real-time
properties. The average properties of the algorithm when run on a virtual memory
machine need to be extensivel y investigated.

The space required by our algorithm may be excessive for some applications. Perhaps
a synthesis of Bishop’s area concept [16) with our method could reduce the memory
requirements of a list processing system while preserving the bounded-time properties of the
elementary operations.

A garbage collection algorithm can be viewed as a means for converting a Von
Neumann-style random acces s memory (with “side-effects” (64]) into a list memory (without
“side-effects ”). Perhaps a list memory can be implemented directly in hardware which uses
considerably less energy by taking advantage of the lack of side-effects in list operations [12].

-

~

---

~ 

~~~ - -~~~~~.- —~~~~~~~~~~—~~~~~~~~ -- -~~~~~~ ~~~~~~~~~——~~~~~,.—- --


Garbage Collecting Activities Incrementall y - 123 - Section 5

5. Gar bage Collectin g Activities Incrementall y

This chapter 1 presents a method by which active objects like a~tors may be
incrementa lly garbage-collected. This method solves a problem which arises when mu~ ipIe
activities are sta rted in an actor system , and later it is determined that some of them are no
longer useful . Rather than allow them to continue wasting system resources , we would like
to identif y and stop these activities which are iio longer relevant to satisf ying the current
goals of the system.

The best examp le of this problem occurs when an actor system is used to evaluate an
expression in “future” order , which is different from call-by-name, call -by-value, and

call-by-need . In future order evaluation, an object called a “future” is created to serve as the
value of each ex pression that is to be evaluated and a separate activity is dedicated to its
evaluation . Future order evaluation allows for more parallelism than even the parallel
evaluation of arguments discussed in chapter 2, because an argument to a procedure
commences being evaluated before the body of the procedure. This argument evaluation
proceeds in parallel with the evaluation of the body of the procedure until tile procedure
finall y requires it. As a result , several levels of a recursive procedure may be evaluated in
parallel , and many loops written as recursive procedures will be automaticall y “unrolled”

• and the different incarnations of the loop body will be evaluated concurrentl y! Future order
evaluatio n raises a new problem which did not exist in systems with only call-by-name or
call-by-value , namel y that some futures which were created in the course of evaluation may
become irrelevant , i.e. an activity is started to evaluate a future because its result is needed,
but after fus-ther collateral computation , the activity is deemed unnecessary. This
unnececcary activity should be stopped and garbage collected, so as to return its resources to
the syctr in.

• I. This chapter is based on the paper “The Incremental Garbage Collection of Processes”
by myself and Carl Hewitt (6].

~. -.~~ - - LA

Garbage Collecting Activities Incrementally - 124 - Section 5

The problem of irrelevant activities also appears in multiprocessing problem-solving
systems which start several processors working on the same problem but with different
methods, and return with the solution whic h finishes first. This parallel method strategy
also has the problem that the activities which are Investigating the losing methods must be
identified, clea t- sly stopped,’and their resources re-assigned to more useful tasks.

The solution we propose is that of incremental garbage collection. If the dependency
structure of the evaluation plan is explicitly represented in memory as part of the graph
memor y (like Lisp’s heap), a garbage collection algorithm can discover which activities are
performing useful work , and which can be recycled.

Call-by-future is implemented by an “eager beaver ” evaluator. When an expression of
the language is given to the evaluator by the user, the evaluator evaluates it and all of its
subexpressions as soon as possible, and in parallel. The evaluator does this by creating and
returning for each subex pression a futu re, which is a promise to deliver the value of that
subexpression at some later time, if it has a value. Each future can evaluate its
subex pression independently and concurrently with other futures because it is created with
its own evaluator activity, which is dedicated to evaluating that subexpression. When the
value of a future is needed ex plicitly, e.g. by the primitive function “ .“ , the evaluation of the
subexpression may or may not be complete. If it is complete, the future’s value is

immediatel y available; if not, the requesting activity is forced to wait until the evaluation of
the subexpression is finished.

Futures are created recursively in the evaluation of an expression by our eager
evaluator whenever it encounters functional application. A new future is created for each
argument, resulting in the parallel (collateral) evaluation of those arguments, while the main
activity tackles the job of evaluating the function position and applying it to the tuple of
argument futures . We call the main evaluator activity the p arent , while the futures it
direct ly creates are its offspring.

Mor e precisely, a f u ture is a triple (activity, cell, waiting room), where activity is the
activity charged with evaluating an argument expression in its proper environment, cell is a

cell actor , p ivate to the future, which will save the value of the argument when it is ready,

-~~~~~~~-~~~~~~~~~~~~~~~~~~ •—.- ~~

— -~~~~

Garbage Collecting Activities Incrementally 125 - Section 5

to avoid recomputing it , and waiting room is a set of activ ity continuations which are
wa it ing for the value of this future.

When the future is created , its activity starts evaluating the subexpression in the given
environment. If any other activity needs the value of this future before it is ready, the
requesting activity puts its continuation in the waiting room of the future. When the value
promised by the future is ready, its activit y stores that value into the future’s cell, sends
wakeup messages to all of the activity continuations in the future’s waiting room, and goes
awa y. Henceforth , any activity needing this future’s value can find it in the future’s cell;
without waiting or performing any further computation.

Notice that eager evaluation is different from lazy evaluation [94,91,46,50,36] of the
expression in that the latter is designed to delay evaluation of the expression until the value
is needed while a future immediately dedicates an activity to evaluating the ex pression.
This difference is both a strength and a weakness of eager evaluation.

The main problem with our eager interpreter is that it can be wasteful , because it
antici pates which values are going to be required to compute the final result. For example,
an activ ity may be assigned to the computation of a future whose value will never be
needed; in this case , we say that the activity is irrelevant. However , since the a p riori
determination of irrelevancy seems undecidable, all activities must proceed until irrelevancy
can be proven . If there were no way to determine irrelevancy a po steriori , these irrelevant
activit ies could tie UI) a significant amount of computing power. For example, if an activity
were assigned to evaluate a non-terminating expression, its computational power would be
lost to the system forever! We argue in the following sections that the “garbage collection”
of pass ive storage can be extended to the reclamation of these irrelevant active activities.
Furthermore , we show that this garbage collection can be done incremental ly, thus
eliminating the long delays classically associated with garbage collection.

--- - - •~~~ --.

Garbage Collecting Irrelevant Futures - 126 - Section 5.1

5.1 Garbage Collecting Irrelevant Futures

A classical garbage collector for passive storage starts by marking the root of the heap
of passive storage nodes, and proceeds by propagating mar~ks from marked nodes to their
offspring, until there are no unmarked nodes with a marked parent. Upon the completion
of this process . any nodes which are still unmarked are not accessible from the root; hence
they are declared garbage and returned to the list of available free nodes.

The key to ga rbage collecting activities is that an activity’s continuation is addressable
as a vector of words in the common address space of all the processors, but distinguished
with a special type code. This vector stores the acquaintances of the continuation. We
claim that activit ies whose continuations become inaccessible from the root are irrelevant
and should be reclaimed. The top-level activity--that assigned to the top level future--is
always relevant since the user expects an answer, and therefore it is always directly
accessible from tile root of the heap. Any offspring of this future whose values are still
required are accessible to it. Hence by induction, relevant activities remain accessible from
the i~oot . If a future becomes inaccessible from the root, then no other activity can access its
value--even when it is finally ready--and hence the future and its activity are irrelevant.

In order that all irrelevant activities be identified as soon as possible, we must ensure
that all activities classified as accessible are truly relevant to the computation. An example
of an activity which is accessi ble but irrelevant is that of a loiterer , i.e. an activity whose
continuation is accessible only through the “waiting room” of some future. A loiterer is
waiting foi- the value of one or more futures, but the loiterer’s value is not needed by any
other activity . Loiter ers cannot be immediately garbage collected because of the outstanding
waiting-room pointers to them. However , when the loiterer is eventually restarted and
forgotten by the waiting room, it will then become inaccessible from the root of the heap
and will be picked up by tile next garbage collection. Hence, wait ing-room accessibility is a
second-class form of accessibilit y which will not protect a loiterer from eventually being
garbage collected .

- •
~~

-- •---—— .-— • S,-- --
~~~~~~~~~~~~~~~~ 

--— —- —--



F~~ 
-

Garbage Collecting Irrelevant Futures - 127 - Section 5.1

If busy waiting is used, waiting rooms are not necessary, and thus there will be no
loiterers. However , busy waiting requires that a high price be paid for communication
channe ls between the waitor and the waitee, because the incessant queries clog these
cha nnels.

Garbage collection is made incremental by using some of the ideas from the previous
chapter. The mark phase of our incremental garbage collector process employs three colors
for every object --white, grey, and black. Intuitively, white nodes are not yet known to be
accessible , grey nodes are known to be accessible, but whose offspring have not yet been
checked , and black nodes are accessible, and have accessible offspring. Initially, all nodes
(including actors) are white. A white node is made grey by shading it; i.e. making it “at
least grey” [31]. while a grey node is marked by shading its offspring and making the node
black- -both indivisible processes. Marking is initiated by stopping all message transmission
and shading the root. Marking proceeds by finding a grey node, shading its offspring, then
ma king that node black. When there are no more grey nodes, garbage collection is done; all
still-white nodes are then emancipated and the colors white and black switch interpretations.

Although all activit y must be stopped when garbage collection is begun, an activit y
can he restarted as soon as it has been blackened by the collector. Since the top-level activit y
is pointed at directly by the root of the heap, it is restarted almost immediately. It should be
obvious that when an activity first becomes black , it cannot point directly at a white node.
We wish to preserve this assertion. Therefore, whenever a running black activity is about
to violate it--by accessing a white acquaintance --it immediately shades the white actor before
proceeding. Furthermore, ever y new actor the activity creates is created black. The
intuitive rationale behind these policies is that so f a r  as any black activity is concerned , the
gar l ’age collection has alread y finished. Furthermore, the actors which are found accessible by

• (li e ga rl ’agc collector are exactl y those which were accessible at the time (li e ga rba ge collection
was started.

We prove the correctness of this garbage collector informally. The garbage collector is
given a head Start on all of the activities because they are stopped when it is starred . When

— an activity is restarted , it is black , and everything it sees is at least grey, hence it is in the



Garbage Collecting Irrelevant Futures - 128 - Section 5.1

collector ’s wake . Whenever an activity attempts to catch up to the collector by accessing an

acquaintance, that actor is immediately shaded. Therefore, the activit y can never pass or

even catch the collector. Since the collector has already traced any actor an activity may

have as an acquaintance, the activity cannot affect the connectivity of the graph that the

collector sees. Because white or grey activities are not allowed to run, any created actors

are black , and since actors darken monotonically, the number of white actors must

monotonically decrease, proving termination.
Our garbage collector has only one phase--the mark phase--because it uses the Cheney

algorithm which marks and copies in one operation. This algorithm copies accessible list

structures from an “old semispace” into a “new semispace”. As each node is copied, a

“forwarding address ” is left at its old address in the old semispace. A “scan ” pointer linearly

scans the new semispace, while updating the pointers of newly moved nodes by moving the

nodes they point to. The correspondence between our coloring scheme and this algorithm is

this: ru / i f  te actors are those which reside in the old semispace; grey actors are those which

have been copied to the new semispace, but whose acquaintances have not been moved to

the new semispace (i.e. have not yet been encountered by the scan pointer in the Cheney

algorithm); and black actors are those ~‘hich have been both moved and updated (i.e. are

behind the scan pointer). When scanning is done (i.e. there are no more grey actors and all

accessible actors have been copied), the old and new semispaces then interchange roles.

Reallocating processors is simple; all processors are withdrawn at the start of garbage

collection, and are allocated to each activit y as it is blackened. Thus, when the garbage

collection has finished, all and only relevant (=accessible) activities have been restarted.

The restriction that white or grey activities cannot run can be relaxed to allow white

act ivi t ies  to r u n  so long as a white activity does not cause a black actor to p oint to a white one.

This can only happen if the white activity is trying to perform a side-effect (e.g. a “store!”

operation) on a black actor . If operations of this type are suspended until either the activity

either becomes black or is garbage-collected, then proper garbage collector operation can be

• ensured, and convergence guaranteed. Under these conditions, a activit y creates new actors

of its own color , i.e. white activities create On ly white actors. When a white activity is

L __________________________



Garbage Collecting Irrelevant Futures - 129 - Section 5.1

encountered by the garbage collector, it must stop and allow itself to be colored black before

continuing.

The notion that actors must be marked as well as storage may explain some of the

trouble that Dij kstra and Lamport had when trying to prove their parallel garbage

collection algorithm correct [31,32,58,59). Since their algorithm does not mark a user process

by coloring it black (thereby prohibiting it from directly touching -white nodes), and allows

these white processes to run, the proof that the algorithm collects only and all garbage is

long arid ver y subtle (see [59]).

5.2 Coroutines and Generators

One problem with our “eager beaver ” evaluator is that some ex pressions which have

no finite values will continue to be evaluated without mercy. Consider, for example, the

infinite sequence of squares of integers 0,1,4,9,... We give in Figure 19 a set of LISP-like

functions for computing such a list.
The evaluation of “(squares-beginning-with 0)” will start off a future evaluating

“(cons .)“ , which will start up another future evaluating “(squares-beginning-with 1)”. and so

forth. Since this computation will rYot terminate, we might worry whether anything useful

Fig. 19. An infinite Sequence of Squares

squares-begining-with
(7tx. (coils (:~ x x) (squares-begining-with (. x I)))) ; Compute an element.

COIlS (~tx y. ; Define CONS function.
(7’~msg.

(if (“ msg ‘car) x
(
~ msg ‘cdr) y)))

car (Ax . (x ‘car)) ; Ask for first component.

cdr (Ax . (x ‘cdr)) ; Ask for second component.

list-of -squares (squares-beginning-with 0) ; Start the recursion. 

~~~~~~~~~~~~~~~


- — ~ — —r ‘fl— ~~~~~~~~~~~~~~~~~~~~ — — — -~

Coroutines and Generators - 130 - Section 5.2

will ever get done. One wa y to ensure that this computation will not clog the system is to
convert it into a “lazy ” computation [94,91,46,36] by only allowing it to proceed past a point
in the infinite list when someone forces it to go that far. This can be easily done by
performing a lambda abstraction on the expression whose evaluation is to be delayed. (See
Figure 20). Since our evaluator will not try to further evaluate a X-expression, this will
protect its body from evaluation by our eager beavers.

However , this technique is not really necessary if we use an exponential sched uler for
the proportion of effort assigned to each activity. This scheduler operates recursively by
assigning 100% of the system effort to the top-level future, and whenever this future spawns
new futures, it allocates only 50% of its allowed effort to its offspring. While an activity is in
the wa iting room of a future, it lends it processing effort to the computation of that future.
However , a future which finishes returns its effort to helping the system--not its siblings.
Now the set of futures can be ordered according to who created whom and this ordering
forms a tree. As a result of our exponential scheduling, the further down in this tree a
future is from the top-level future, the lower its share of the computational resources.
Therefoi e, as our eager heavers produce more squares, they become exponentially more
discouraged. But if other activities çnter the waiting room for the square of a large
number, they lend their encouragement to its computation. -

Fig. 20. A Lazy Sequence of Squares

squares-begining-with’
(Ax . (cons (~:~ x x)

(Amsg. ((squares-begining-with’ (. x I)) msg)))) ; Protect from early evaluation.

-~~~~~~ ~~~~ •-• --—--

-

Coroutmes and Generators - 131 - Section 5.2

Call-by-future evaluation provides for the maximal concurrency possible in evaluating

the expressions of a language. It can provide more parallelism than current data flow

machines [28,4) or “eventual values” [53). For example consider the following program

which computes the square root of the sum of the squares of its arguments:

f (Ax y. (square-root (. (~:‘ x x) (“ y y))))

Note that in computing the value of an expression such as the following
(k ~ (f (Ii ~

) (g 4))) that the square of (Ii 3) can be performed in parallel with the square of
(g 4). In addition the square root of the sum of these values might be performed after the

function k has been entered! Thus there is a great deal of potential concurrency in the

evaluat ion of the above expression.

In an evaluator which uses call-by-future for CONS, the obvious program for

M APCAR (tile LISP analog of APL’s parallel application of a function to a vector of

arguments) will automatically do all of the function apphcations in parallel in a “pipe-lined”

fashion . However , with an ex ponential scheduler the values earlier in the list will be

accorded more effort than the later qnes.

This scheduler is not omniscient, though, and system effort will still have to be

realloca ted by the garbage collector as it discovers irrelevant activities and returns their

- computing power to help with still relevant tasks.

5.3 Time and Space

“La zy” evaluation [94,46,36] is an optimal strategy [91,13) for evaluating A-calculus

expressions on a single processor , in the sense that the minimum number of reductions

(procedure calls) are made. However, when more than one processor is available to evaluate

tile ex pression, it is not clea r what strategy would be optimal. If nothing is known about

the particular expression being evaluated, we conjecture that any reasonable strategy must

allocate one processor to lazy evaluation, with the other processors performing eager

Time and Space - 132 - Section 5.3

evaluation. We believe that our “eager beaver” evaluator implements this policy, and unless
the lrocessors interfere with one another excessively, a computation must always run faster
w ith ai~ eager evaluator runhing on multiple processors than a lazy evaluator running on a
single ~~~~~~~ If there are not enough processors to allocate one for every future, then we
believe that our “exponential scheduling” policy will do a good job of dynamically allocating
processor effort where it is most needed.

Although the universal creation of futures should reduce the time necessary to
evaluate an expression, we must consider how the space requirements of this method
compare with other methods. The space requirements of futures are hard to calculate
because under certain schedules, future order evaluation approximates call-by-value, while

with other schedules, it is equivalent to call-by-need (the same as call-by-value, but an
argument is evaluated only once). In the worst case, the space requirements of futures can
be arbitraril y bad, depending upon the relative speed of the processors assigned to
non-terminating futures.

5.4 The Power of Futures

The intuitive semantics associated ‘wit h a future is that it runs asynchronously with its
pa rent ’s evaluation . This effec t can be achieved by either assigning a different processor to
each future, or by multiplexing all of the futures on a few processors. Given one such
implementation, the language can easily be extended [65) with a construct having the
following form: “(EITHER <e1> <e2> ... <en>)” means evaluate the ex pressions <ei> in

parallel and return tile value of “the first one that finishes”. Ward [95) shows how to give a
Scott -type lattice semantics for a generalization of this construct. He starts with a power-set
of the l)ase domain and gives it the usual subset lattice structure, then extends each
primitive function to operate on sets of elements from the base domain in the obvious way,
and finally clef ines the result of his construct to be the least upper bound (LUB) of all the

in t he subset lattice. Our EITHER construct is approximated2 by spawning futures
for all the <e 1>, and polling them with the parent activities until the first one finishes. At

The Power of Futures - 133 - Section 5.4

that point , its answer is returned as the value of the “EITHER” expression, and the other
futures become inaccessible from the root of the heap.

In Figure 21 we give several exam ples of the power of the “EITHER ” construct:
The first example is that of a numeric product routine whose value is zero if either of

its arguments are zero, even if the non-zero argument is undefined. The second example is
an integration routine for use in a symbolic manipulation language like Macsyma , where

- there is a relativel y fast heuristic integration routine which looks for common special cases ,
and a general but slow decision procedure called the Risch algorithm. Since the values of
both method s a re guaranteed to be the same (assuming that they perform integration
properly), we need not worry about the possibility of non-determinacy of the value of this
expression (i.e. non-singleton subsets of the base domain in Ward’s lattice model).

One may ask what the power of such an “EITHER” construct is; i.e. does it increase
the expressive power of the language in which it is embedded? A partial answer to this
questioli has been given with respect to “uninterpreted” schemata. Uninterpreted schemata
answer quesuons about the expressive power of programming language constructs which
are implicit in the language, rather than being simulated. For example, one can com pare

the power of recursion versus iter~tion in a context where stacks cannot be simulated.
Hewitt and Paterson [48] have shown that uninterpreted “parallel” schemata are strictly
more powerful than recursive schemata. The essence of this difference is that parallel

Fig. 21. Examples of the EITHER Construct

(multiply x y) (EITHER (if x=0 then 0 else (loop))
(if y=0 then 0 else (loop))

x y))

(integrate exp bound-variable)
(EITHER (fa st -heuristic-integrate exp bound-variable)

(Risch-integrate exp bound-variable))

2. This implementation is only an approximation because only singleton sets of elements of
the base domain can ever be returned.

- - - ~~~~~~~~~~~~~~~~~~

The Power of Futures - 134 - Section 5.4

schemata can simulate non-deterministic computation without becoming side-tracked in
some infinite branch of the computation. This simulation is possible because the parallel
schema can follow all of the non-deterministic branches in parallel.

Also, Ward [95) has shown that the “EITHER” construct strictl y increases the power of
the A-ca lculus [21,26] in the sense that there exist functions over the base domain which are
inexpressible without “EITHER”, but are trivially expressible with it.

5.5 Shared Data Bases

The advantage that garbage collection has over the explicit killing of activities
becomes appa rent when pa rallel activities have access to a shared data base. These data
bases are usually protected from inconsistency (due to simultaneous update) by a mutual
exclusion method. However , if some activity were to be. killed while it was inside such a
data base, the data base would remain locked, and hence unresponsive to the other activities
requesting access.

The solution we propose is for the data base to always keep a list of pointers to the
activities which it has currentl y inside. In this way, an otherwise irrelevant activity will be
accessible so long as it is inside an accesiible data base. However, the moment it emerges, it
will be forgotten by the data base, and subject to reclamation by garbage collection. The
crowds component of a ser ia lizer , a synchronization construct designed to manage parallel
access to a shared data base [SI), automatically performs such bookkeeping.

5.6 Conclusi ons

We have Presented a method for managing the allocation of processors as well as
storage to the subconlputations of a computation in a wa y that tries to minimize the elapsed
time required. This is done by anticipating which subcomputations will be needed and
starting them running in parallel, before the results they ci~npute are needed. Because of
this ant icipation , suhcomputations may be started whose results are not needed, and our

incremental garbage collection method identifies and revokes these allocations of storage

Conclusions - 135 - Section 5.6

and processing power.

Some of the early thinking about call-by-future was done several years ago by J .
Rumhaugh who was one of the first to realize that futures offer a maximum of concurrency
in the execution of a program without introducing the usual pitfalls of timing errors,
starvat ion , and deadlock . Unfortunately he did not have time, to include this material in his
thesis [75). Peter Hibbarcl [53) has independently discovered these virtues of futures. The
main original contributions of this chapter are our proposal for an exponential scheduler
for “eager ” evaluation and the methodology for using incrementa l garbage collection to
reclaim irrelevant activities and redirect the scheduling priorities of activities working to
produce the values of futures. Concepts similar to that of “futures” have been

independently proposed by Friedman and Wise (37] and implemented by Hibbard (53i~
Henry Lieberman, working on implementations of actor language PLASMA (50], has
actually implemented several of the suggestions of this chapter.

The scheme presented here assumes that all of the processors reside in a common,
global address space, lke that of HYDRA ~9B3. Since networks of local address spaces look

• promising for the future, methods for garbage collecting those systems need to be developed.

3. However , since Algol-68 does not support “returned functional values”, A scheme in the
language need not use garbage collection to discover irrelevant “eventuals”. They can be
coerced into values before being returned as the value of a procedure, and hence processor
allocation can use a LIFO scheme like that used for storage of the activation records on the
stack. However a certain amount of concurrency can be lost by enforcing this coercion.

Conclusions and Further Research - 136 - Section 6

6. Conclusio ns and Further Research

This thesis has been concerned with a precise specification of the Actor theory and
with possible mechanisms for mapping a system having Actors as primitive objects onto
current hardware .

The Actor theory does not try to accuratel y describe every detail of a distributed
system, because in creating a model for some phenomenon, one must choose which of its
features to emphasize and which to suppress. The actor model ignores the sending of
messages and concentrates instead on their receipt , because the receipt of messages is more

interes iiug due to the non-determinacy involved. Our model also ignores unreliabilities in
the network by assuming that every message is eventually received, because we believe that
the issue of transmission errors is separable from our current concerns. The actor model of
computation as a simple partial order ignores the issue of “real time”, i.e. time which can be
measured , and con centrates only on the orderings of events. However, in this thesis we are
implicitly assuming that the receipt of a message by an actor requires only a bounded
amount of computation. Hence, each event should require only a brief instant of real time
to complete. Finally, issues of representation have been neglected in favor of issues of
behavior; e.g. a particular concrete representation for actors and messages has not been
presented .

However , no matter what representations are chosen for the implementation of an
actor system , certain problems in the management of system resources will arise. In chapters
3 and 4 we ar gue that such an implementation will require a garbage-collected heap for
storage illanagement and that for real-time performance an incremental method of garbage
collection will be necessary . Such a method is presented together with an exhaustive
comparison of it w ith other alternatives.

In chapter 5, we argue that in a distributed parallel processing system the resources of
the CPU’s can be squandered exploring avenues of computation that have ceased to be of
relevance to satisfying the main goals of the system. We advocate a garbage collection
approach to this problem in which the garbage collector discovers and stops these irrelevant

~

_ _ _

-I ’

Conclusions and Further Research - 137 - Section 6

li,-ies of computation. As the number of CPU’s in parallel systems continues to rise,
programmers will wa nt to use more of this computational power for such speculative
Cofl)putation, and the need for our garbage collection methods will grow.

Looking into the future, a major problem to be overcome in the management of the
resources of a distributed system is the garbage collection of objects in separa te address
spaces. Before this problem can be solved, however, the issues of object naming in a
distributed system must first be resolved. In systems where names have global significance,
Bishop’s area concept (16] may be appropriate, in which case his algorithms for garbage
collection are of interest. Reed’s proposal for object-fa m ilies (72] may also provide a proper
model for naming in distributed systems.

Now that we have provided a firm foundation for the implementation of real-time
actor systems by showing how the basic events (message receipts) can be performed in a
bounded a mount of time, research into good scheduling strategies for such systems should
follow. Also, techniques will be needed for deriving and proving time bounds for complex
activities requiring many hundreds of events.

_ _ _ _ _ _ _ _ _ _ _ _ _ _

- -

F -
~~, -

- References - 138 -
Re f erence s

1. Aho, A. V., Hopcroft , J . E., and UlIman, J. D. The Design and Analysis of Computer
A!goru/ ~;ns. Addison-Wesley, Reading, Mass., 1974.

2. Aruboig, S. “Storage Administration in a Virtual Memory SIMULA System”. BIT 12
(1972), 125-Ill.

3. Arnhorg. S. “Optimal Memory Management in a System with Garbage Collection”.
BIT II (1974), 375-38!.

4. A rvind and Costelow, K. “Some Relationships between Asynchronous Interpreters of a
Dataflow Language” IFIP Working Conference on Formal Description of Programming
Concepts. 31 July to 5 August , 1977.

5. Baker, H. C., Jr. “List Processing in Real Time on a Serial Computer”. Al Working
Paper 139, MIT Al Lab., Feb. 1977, also to appear in C4CM.

6. Baker , H. C. Jr., and Hewitt, C. “The Incremental Garbage Collection of Processes”.
AC~M SIGA/? T -SIGPLAN Symposium, Roch., N.Y., Aug. 1977.

7. Banks , E. R. “Information Processing and Transmission in Cellular Automata”. TR-81,
MIT Project MAC, Jan. 1971.

8. Barbacci , M. “A LISP Processor fo’r C.ai”. Memo CMU-CS-71-103, Computer Science
Dept., Carnegie-Mellon University, 1971.

9. Barnes , C. H., et al. “The ILLIAC IV Computer ”. IE E E Transactions , Cl7,8 (Aug. 1968).

10. Batcher , K. E. “Sorting Networks and their Applications”. 1968 SJCC, April 1968,
307-314.

Ii. Bawden, A., Greenblatt , R., Holloway, J ., Knight, T., Moon , D., Weinreb, D. “LISP
Machine Progress Report ”. Memo 444, MIT Al Lab., Aug. 1977.

12. Bennett , C. H. “Logical Reversibility of Computation”. IBM J. Res. Develop. 17 (1973),
525.

13. Berry, Gerard and Levy, Jean-Jacques. “Minimal and Optimal Computations of
Recursive Programs”. Record of 1977 Conference on Principles of Programming
Languages, Jan. 1977, 215-226.

- a - -
~
— — ---

~

_ _ -

References - 139 -

II. Berzins, Valdis . “An Independence Result for Actor Laws”. Computation Structures
Note 34, MIT Lab. for Comp. Sci., Dec. 1977.

IS. Birtwist le , C. M., DahI, 0.-j., Myhrhaug, B, and Nygaard, K. Simula Begin. Auerbach,
Phil., Pa., 1973.
I

16. Bishop, P. 8. “Computer Systems with a Very Large Address Space and Garbage
Collection”. Ph.D. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science. Also TR-178, MIT LCS, May 1977.

17. Bobrow, D. G. and Wegbreit, B. “A Model and Stack Implementation of Multiple
Environments”. CACM 16,10 (Oct. 1973), 591-603.

18. Bobrow, D. C. “A Note on Hash Linking”. CACM 18,7 (July 1975),413-415.

19. Campbell, J. A. “Optimal Use of Storage in a Simple Model of Garbage Collection”.
Info. Proc. Letters 3, No. 2, Nov., 1971, 37-38.

20. Cheney, C. J. “A Nonrecursive List Compacting Algorithm”. CACM 13,11 (Nov. 1970),
677-678.

21. (‘~‘um -c h. A. “The Calculi of Lambda Conversion”. Annals of Mathematics Studies,
Princeton University Press, 1941.

22. Clark , D. W. and Green, C. C. ~An Empirical Study of List Structure in Lisp”. CACM
20,2 (Feb. 1977), 78-87.

23. Clinger, W . Unpublished 6.835 class notes, MIT EECS Dept., Dec. 1977.

24. Coffman, E. C. Jr. (ed.) Computer and Job-Shop Scheduling Theory. Wiley and Sons,
New York , 1976.

25. Collins, C. E. “A Method for Overlapping and Erasure of Lists”. CACM 3,12 (Dec.
1960), 655-657.

26. Curry, H. B., and Feys, R. Combinatory Logic, Amsterdam, 1958.

27. Ba hI, 0.-j. and Nygaard , K. “SIMULA--an ALGOL-Based Simulation Language”.
CACM 9,9 (Sept. 1966), 671-678.

28. Dennis, J . and Misunas, D. P. “A Preliminary Architecture for a Basic Data-Flow
Processor. In 2nd IEEE Symposium on Computer Architecture., N.Y. Jan. 1975, 126-132.

~!~

References - 140 -

29. Deutsc h, L. P. “A LISP Machine with Ver y Compact Programs”. IJCAI 3, Stanford,
Ca., Aug. 1973.

30. Deutsch , L. P. and Bobrow, D. C. “An Efficient, Incremental, Automatic Garbage
Collector”. CACM 19.9 (Sept. 1976), 522-526.

31. Dijkst ia. E. W ., Lamport , L., Martin, A. J., Scholten, C. S., Steffens, E. F. M. “On-the-fly
Garbage Collection: An Exercise in Cooperation”. E. W. Dijkstra note EWD496, June
1975.

32. Dijkstra , E. W. “After Many a Sobering Experience”. E. W. Dijkstra note EWD500.

33. Erman, L. D. and Lesser, V. R. “A Multi-level Organization for Problem Solving using
Many, Diverse, Cooperating Sources of Knowledge”. IJCAI-75, Sept. 1975, 483-490.

34. Fenichel, R. R., and Yochelson, J. C. “A LISP Garbage-Collector for Virtual-Memory
Computer Systems ”. CACM 12,11 (Nov. 1969), 611-612.

35. Fischer, M. J . “Lambda Calculus Schemata ”. Proceedings of ACM Conference on
Proving Assertions about Programs. SIOPLAN Notices Jan. 1972.

36. Friedman, D. P. and Wise , U. S. “CONS should not evaluate ~ts arguments”. In S.
Michaelson and R . Mim er (ef~is.), Automata , Languages and Programming, Edinburgh
University Press, Edinburgh (1976), 257-284.

37. Friedman, D. P. and Wise, B. S. “The Impact of Applicative Programming on
Multiprocessing”. 1976 m t . Conf. on Parallel Processing, 263-272. Also IEEE Trans. on
Comps ., to appear.

38. Gardner , M. (ed .) “Mathematical Games”. Scientif ic American, New York, Oct. 1970.

39. Goklbei-g, A . ai- id Kay, A. (eds.) SMALL TAL K-72 Instruction Manual. SSL 76-6, Xerox
PARC, Pa lo Alto, Ca., March 1976.

40. Goto, E. and Kanada , Y. “Hashing lemmas on time complexity with applications to
formula nlanil)UlatiOn.” SYMSAC 76 (ACM), New York.

41. Greenblatt , R. “The LISP Machine”. Al Working Paper 79, M.I.T. A.!. Lab., Nov. 1974.

- 42. Greeiiblatt , R. Private communication, Feb. 1977.

_ _ _

References - 141 -

43. Greif , I. “Semantics of Communicating Parallel Processes, PhD Thesis, TR-154, MIT
Project MAC, Sept . 1975.

44. Greif , I. and Hewitt , C. “Actc r Semantics of PLANNER-73”. ACM SIGPLAN-SI3ACT
Conf ., Palo Alto, Ca., Jan. 1975.

45. Halstead , Robert H. Jr. “Multiprocessor Implementations of Message-Passing Systems”.
SM. Thesis, MIT, Feb. 1978.

46. Henderson, P. and Morris J . H. “A Lazy Evaluator” In Proceedings of 3rd ACM
Symposium on Principles of Programming Languages. (1976), 95-103.

47. Hennie, F. C. Iterati ve Arrays of Logical Circuits. MIT Press, Camb., Ma., 1961.

48. Hewitt , C. and Paterson, M. “Comparative Schematology”. Record of Project MAC
Conference on Concurrent Systems and Parallel Computation, June 1970.

49. Hewitt , Carl, et al. “Behaviora l Semantics of Non-recursive Control Structures”. Proc.
Colloque s ti r Ia Prograrnmaaon. Lecture Notes in Computer Science No. 19.
Springer -Verlag , 1974.

50. Hewitt , C. “V~ew~ng Control Structures as Patterns of Passrng Messages” WP 92, MIT
A L Lab., Dec. 1975. Accepted for publication in the Al. Journal.

SI. Hewitt , C. and Atkinson, R. ‘Parallelism and Synchronization in Actor Systems”.
Record of 1977 Conference on Principles of Programming Languages, Jan. 17-19, 1977,
L.A., Cal., 267-280.

52. Hewitt , C. and Baker , H. “Actors and Continuous Functionals”. Memo 436A, MIT Al
Lab., July 1977.

53. l-Iibbard, P. “Parallel Processing Facilities”, in New Directions in Algorithmic
Lan guag~’s, (ed.) Stephen A. Schuman, IRIA , 1976, I-i .

S4. Hoare, C. A. R. “Monitors: An Operating System Structuring Concept”. Stanford
University, 1973.

55. Hoare, C. A. R. “Optimization of Store Size for Garbage Collection”. Info. Proc. Letters
2 (1974), 165-166.

57. HoIt , A., et al. Final Report of the Information System Theory Project , TR-68-305, RADC,
Griffis AFB, N.Y., Sept. 1968.

~

-~~~~~~~ .~~~~~~~~~~~~~~~~~~ ---- ---—~~~~~~~~~~ - - -—— -~~~~ ~~~~~~~~~~~~~~~~~~~~~~

References - 142 -

57. Knuth, B. E. The Art of Computer Programming. Vol. 1, Fundamental Algorithms.
Addison-Wesley, Reading, Mass. 1968.

58. Laniport , L. “Garbage Collection with Multiple Processes: An Exercise in Parallelism”.
Mass . Computer Associates, CA-7602-25ll, Feb. 1976.

59. Lamport , L. “On-the-fly Garbage Collection: Once More with Rigor”. Mass. Computer
Associates , CA -7508-1611, Aug. 1975.

60. Landin, Peter J. “A Correspondence between ALGOL 60 and Church~s
Lambda-Notation”. CACM 8,2-3 (Feb. and March 1965).

61. Liskov , B., Sn yder, A., Atkinson, R., and Schaffert, C. “Abstraction Mechanisms in
CLU ”. CACM 20,8 (Aug. 1977), 564-576.

62. Liskov ,. B. Private communication, Feb. 1978.

63. Liu, C. L. and Layland, J. W. “Scheduling Algorithms for Multiprogramming in a
Hard Real -Time Environment”. JACM 20,1 (1973), 46-61.

64. McCarthy, John, er al. LISP 1.5 Programmer ’s Manual. MIT Press , Cambridge, Mass.,
— 1965.

65. McCarthy, J. “A Basis of the Mathematical Theory of Computation” In P. Braffort and
D. Hirschberg (eds.) Programming Systems and Languages. McGraw-Hill, New
York(l967), 455-480.

66. Minsky, M. L. “A LISP Garbage Collector Algorithm Using Serial Secondary Storage”.
A.I. Memo 58, M.I.T. A.l. Lab., Oct. 1963.

67. Moon, David A. MACLISP Reference Manual. Project MAC, MIT Cambridge. Mass.,
December 1975.

68. Muller , K. C. “On the Feasibility of Concurrent Garbage Collection”. Ph.D. Thesis,
Technische Hogeschool DeIft , The Netherlands, March 1976, (In English).

69. Newell, A ., et al. lnformatlon Processing Language V Manual. Second edition,
Prentice -Hall. Englewood Cliffs, N.J., 1964.

70. Plotkin, C. D. “A Powerdomain Construction”. SIAM J. Corn put. 5,3 (Sept. 1976),
452-487.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
--— 

, - - - -

~~~~~~~~~~

-.- -

~~~~~~~

-

p.

References - 143 -

71. Pratt , V. R. “The Competence/Performance Dichotomy in Programming”. Memo 400,
MIT A l Lab., Jan. 1977.

72. Reed, U. P. “Naming of Objects in a Distributed Autonomous Computer System”. PhD
thesis proposal, MIT EECS Dept., July 1977.

73. Reynolds , John C. “Definitional Interpreters for Higher Order Programming
Languages”. ACM Conference Proceedings 1972.

74. Rivest , R. and Pratt , V. “The Mutual Exclusion Problem for Unreliable Processes”.
17th 1EEE Symp . on the Founds. of Corn p. Sci., Oct. 1976, 1-8.

75. Rumbaugh, J. E. “A Parallel Asynchronous Computer Architecture for Data Flow
Programs” Ph.D. dissertation, M.I.T. May 1975. MAC TR-150.

76. Sassa , M. aiid Goto, E. “A hashing method for fast set operations.” Information
Process ing Letters 5, 1976, 31-34.

77. Schonhage, A. “Real-Time Simulation of Multidimensional Turing Machines by
Storage Modification Machines”. MAC TM-37, Project MAC, M.I.T., Dec. 1973.

78. Scott, U. “Outline of a Mathematical Theory of Computation”. 4th Princeton Conf. on
Inf. Sci . and Sys., 1970, l69-1~6.

79. Scott, D. “Data Types as Lattices . SIAM J .  Comput. 5,3 (Sept. 1976), 522-587.

80. Steele, C. L. Jr. “Multiprocessing Compactifying Garbage Collection”. CACM 18, 9
(Sept . 1975), 495-508.

81. Steele, C. L. Jr., and Sussman , G. J. “LAMBDA: The Ultimate Imperative”. Memo 353,
MIT Al Lab., March, 1976.

82. Steele, C. L. Jr. “LA MBDA: The Ultimate Declarative”. Memo 379, MIT Al Lab., Nov.
1976.

83. Steele, C. L. Jr. Private communication, March 1977.

84. Steele, C. L. Jr. “Debunking the ‘Expensive Procedure Call’ Myth or, Procedure Call
Implementations Considered Harmful or, Lambda: the Ultimate GOTO”. Memo 443,
MIT Al Lab., Oct. 1977.

L - _ _ _  -~~ 



References - 144 -

85. Steiger , R. J. “Actor Machine Arc hitecture”, S M. Thesis, E.E. Dept., MIT, May 1974.

86. Stu-achey, C., and Wadsworth, C. P. “Continuations: A Mathematical Semantics for
Handling Full Jumps”. Tech. Monograph PRG-II, Oxford U. Computing Lab., Jan.
1974.

87. Sullivan, H.. and Bashkow T. R. “A Large Scale, Homogeneous, Fully Distributed
Parallel Machine”. Proc. of Fourth Annual Symposium on Computer Architecture.
March 1977, 105-117.

88. Teitelma n, W . et. al. INTERLISP Reference Manual. Xerox PARC, Palo Alto, Cal.,
1974 . 

-

89. Tessler , C. arid Enea H. J. “A Language Design for Concurrent Processes”. In Proc.
lOGS SJCC.

90. Ullman, J. D. “Polynomial Complete Scheduling Problems”. Proc. 4th Symp. on Oper.
Sys. Princ., Oct . 1973.

91. Vuilleniin, Jean. “Correct and Optimal Implementations of Recursion in a Simple
Programming Language”. JCSS 9 (1974), 332-354.

92. Viiillemin , Jea n. “A Data Structure for Manipulating Priority Queues”. TR 182, Dept.
d’Jnformatique, U. de Paris-Sud 19405-ORSAY, France, March 1976.

93. Wacller, P. L. “Analysis of an Algorithm for Real-Time Garbage Collection”. CACM 19,
9 (Sept . 1976), 491-500.

94. Wa dsworth , C. “Semantics and Pragrniatics of the Lambda-Calculus” Ph.D. dissertation,
Oxforcl(V i71).

95. Ward , S. A. “Functional Domains of Applicative Languages”. MAC TR-136. Project
MAC, MIT, Sept . 1974.

96. Ward , S. A. and Haistead, R. “A Syntactic Theory of Message-Passing”. in progress,
MIT LCS.

97. Weizenbaum, J. “Symmetric List Processor”. CACM 6,9 (Sept. 1963), 524-544.

98. Wulf , W., et al . “HYDRA: The Kernel of a Multiprocessor Operating System”. CACM
17,6 (June 1971), 337-345.



Biographical Note - 145 -

Biograp hical Note

Henry Civens Baker , Jr. was born in Hutchinson, Kansas on June 8, 1947. He
graduated in 1965 from Walnut Hills H.S. in Cincinnati, Ohio , and got his baccalaureate in
Electrical Engineering from the Massachusetts Institute of Technology in June, I969.

Mr. Baker then received a commission in the Public Health Service and was stationed
at the Northeaster Radiological Health Laboratory in Winchester , Massachusetts. In
February of 1970, he assumed a full time position as operations research consultant and
systems designer for the Palm Beach Company of Cincinnati, Ohio, for which he had don-c
prior consulting.

In September of 1971, Mr. Baker began graduate work in Computer Science at M.I.T.
and received his SM. and E.E. degrees in June, 1973 with a thesis entitled “Equivalence
Problems of Petri Nets”. After a one year hiatus as Instructor of Computer Science and
Engineering at the University of Pennsylvania, he resumed his graduate studies at M.I.T.
and received his Ph.D. degree in June, 1978, with a minor in pure mathematics .

Dr. Baker is a member of Tau Beta Pi, Eta Ka ppa Nu, Sigma Xi, and the Association
of Computing Machinery. His interests include running, folk dancing, bicycling, personal
computers and chess.

Dr. Baker will now join the faculty of the University of Rochester as Assistant
Professor in Computer Science.

L ~~~~~~~~~~~~~~~~~~~~ 



Of ficia l Dist r ibut ion List

Defense Documentation Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria, Virginia 22314 12 copies Commandant of the Marine Corps

(Code RD—i) —

Washington , D. C. 20380 1 copy
Office of Naval Research
Information Systems Program
Code 437 Office of Naval Research
Arlington, Virginia 22217 2 copies Code 455

Arlington, Virginia 22217 1 copy

Office of Naval Research
Code 1021P Office of Naval Research
Arlington, Virginia 22217 6 copies Code 458

Arlington, Virginia 22217 1 copy

Off ice of Naval Research
Branch Office/Boston Naval Electronics Laboratory
495 Summer Street Center
Boston, Massachusetts 02210 1 copy Advanced Software Technology

Division, Code 5200
San Diego, California 92152 1 copy

Off ice of Naval Research
Branch Off ice/Chicago
536 South Clark Street Mr. E. H. Gleissner
Chicago, Illinois 60605 1 copy Naval Ship Research & Development

Center
Computation & Mathematics

Office of Naval Research Department
Branch Office/Pasadena Bethesda, Maryland 20084 1 copy
1030 East Green Street
Pasadena, California 91106 1 copy

Captain Grace M. Hopper
NAICOI4/MIS Planning Branch

New York Area Office (OP—9l6D)
715 Broadway — 5th floor Office of Chief of Naval Operations
New York, N. Y. 10003 1 copy Washington, D. C. 20350 1 copy

Naval Research Laboratory Mr. Kin B. Thompson
Technical Information Division Technical Director
Code 2627 Information Systems Division
Washington, D. C. 20375 6 copies (OP—9lT)

Off ice of Chief of Naval Opera tions
Washington, D. C. 20350 1 copy

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, Virginia 22217 1 copy


